Tensor
utils/tensor
Helper module for Tensor
processing.
These functions and classes are only used internally, meaning an end-user shouldn’t need to access anything here.
static
.Symbol.iterator()
⇒Iterator
._getitem(index)
⇒Tensor
.indexOf(item)
⇒number
.item()
⇒number
.tolist()
⇒Array
.sigmoid()
⇒Tensor
.sigmoid_()
⇒Tensor
.transpose(...dims)
⇒Tensor
.norm([p], [dim], [keepdim])
⇒Tensor
.normalize_([p], [dim])
⇒Tensor
.normalize([p], [dim])
⇒Tensor
.stride()
⇒Array.<number>
.view(...dims)
⇒Tensor
.transpose(tensor, axes)
⇒Tensor
.cat(tensors, dim)
⇒Tensor
.stack(tensors, dim)
⇒Tensor
.std_mean(input, dim, correction, keepdim)
⇒Array.<Tensor>
.dynamicTimeWarping(matrix)
⇒Array.<Array<number>>
inner
~ONNXTensor
:Object
~reshape(data, dimensions)
⇒*
~reshapedArray
:any
~DataArray
:*
~NestArray
:*
utils/tensor.Tensor
Kind: static class of utils/tensor
.Symbol.iterator()
⇒Iterator
._getitem(index)
⇒Tensor
.indexOf(item)
⇒number
.item()
⇒number
.tolist()
⇒Array
.sigmoid()
⇒Tensor
.sigmoid_()
⇒Tensor
.transpose(...dims)
⇒Tensor
.norm([p], [dim], [keepdim])
⇒Tensor
.normalize_([p], [dim])
⇒Tensor
.normalize([p], [dim])
⇒Tensor
.stride()
⇒Array.<number>
.view(...dims)
⇒Tensor
new Tensor(...args)
Create a new Tensor or copy an existing Tensor.
...args
*
tensor.Symbol.iterator() ⇒ <code> Iterator </code>
Returns an iterator object for iterating over the tensor data in row-major order. If the tensor has more than one dimension, the iterator will yield subarrays.
Kind: instance method of Tensor
Returns: Iterator
- An iterator object for iterating over the tensor data in row-major order.
tensor._getitem(index) ⇒ <code> Tensor </code>
Index into a Tensor object.
Kind: instance method of Tensor
Returns: Tensor
- The data at the specified index.
index
number
The index to access.
tensor.indexOf(item) ⇒ <code> number </code>
Kind: instance method of Tensor
Returns: number
- The index of the first occurrence of item in the tensor data.
item
number
| bigint
The item to search for in the tensor
tensor._subarray(index, iterSize, iterDims) ⇒ <code> Tensor </code>
Kind: instance method of Tensor
index
number
iterSize
number
iterDims
any
tensor.item() ⇒ <code> number </code>
Returns the value of this tensor as a standard JavaScript Number. This only works for tensors with one element. For other cases, see Tensor.tolist()
.
Kind: instance method of Tensor
Returns: number
- The value of this tensor as a standard JavaScript Number.
Throws:
Error
If the tensor has more than one element.
tensor.tolist() ⇒ <code> Array </code>
Convert tensor data to a n-dimensional JS list
Kind: instance method of Tensor
tensor.sigmoid() ⇒ <code> Tensor </code>
Return a new Tensor with the sigmoid function applied to each element.
Kind: instance method of Tensor
Returns: Tensor
- The tensor with the sigmoid function applied.
tensor.sigmoid_() ⇒ <code> Tensor </code>
Applies the sigmoid function to the tensor in place.
Kind: instance method of Tensor
Returns: Tensor
- Returns this
.
tensor.transpose(...dims) ⇒ <code> Tensor </code>
Return a transposed version of this Tensor, according to the provided dimensions.
Kind: instance method of Tensor
Returns: Tensor
- The transposed tensor.
...dims
number
Dimensions to transpose.
tensor.sum([dim], keepdim) ⇒
Returns the sum of each row of the input tensor in the given dimension dim.
Kind: instance method of Tensor
Returns: The summed tensor
[dim]
number
The dimension or dimensions to reduce. If null
, all dimensions are reduced.
keepdim
boolean
false
Whether the output tensor has dim
retained or not.
tensor.norm([p], [dim], [keepdim]) ⇒ <code> Tensor </code>
Returns the matrix norm or vector norm of a given tensor.
Kind: instance method of Tensor
Returns: Tensor
- The norm of the tensor.
[p]
number
| string
'fro'
The order of norm
[dim]
number
Specifies which dimension of the tensor to calculate the norm across. If dim is None, the norm will be calculated across all dimensions of input.
[keepdim]
boolean
false
Whether the output tensors have dim retained or not.
tensor.normalize_([p], [dim]) ⇒ <code> Tensor </code>
Performs L_p
normalization of inputs over specified dimension. Operates in place.
Kind: instance method of Tensor
Returns: Tensor
- this
for operation chaining.
[p]
number
2
The exponent value in the norm formulation
[dim]
number
1
The dimension to reduce
tensor.normalize([p], [dim]) ⇒ <code> Tensor </code>
Performs L_p
normalization of inputs over specified dimension.
Kind: instance method of Tensor
Returns: Tensor
- The normalized tensor.
[p]
number
2
The exponent value in the norm formulation
[dim]
number
1
The dimension to reduce
tensor.stride() ⇒ <code> Array. < number > </code>
Compute and return the stride of this tensor. Stride is the jump necessary to go from one element to the next one in the specified dimension dim.
Kind: instance method of Tensor
Returns: Array.<number>
- The stride of this tensor.
tensor.squeeze([dim]) ⇒
Returns a tensor with all specified dimensions of input of size 1 removed.
NOTE: The returned tensor shares the storage with the input tensor, so changing the contents of one will change the contents of the other. If you would like a copy, use tensor.clone()
before squeezing.
Kind: instance method of Tensor
Returns: The squeezed tensor
[dim]
number
If given, the input will be squeezed only in the specified dimensions.
tensor.squeeze_()
In-place version of @see Tensor.squeeze
Kind: instance method of Tensor
tensor.unsqueeze(dim) ⇒
Returns a new tensor with a dimension of size one inserted at the specified position.
NOTE: The returned tensor shares the same underlying data with this tensor.
Kind: instance method of Tensor
Returns: The unsqueezed tensor
dim
number
The index at which to insert the singleton dimension
tensor.unsqueeze_()
In-place version of @see Tensor.unsqueeze
Kind: instance method of Tensor
tensor.flatten_()
In-place version of @see Tensor.flatten
Kind: instance method of Tensor
tensor.flatten(start_dim, end_dim) ⇒
Flattens input by reshaping it into a one-dimensional tensor. If start_dim
or end_dim
are passed, only dimensions starting with start_dim
and ending with end_dim
are flattened. The order of elements in input is unchanged.
Kind: instance method of Tensor
Returns: The flattened tensor.
start_dim
number
0
the first dim to flatten
end_dim
number
the last dim to flatten
tensor.view(...dims) ⇒ <code> Tensor </code>
Returns a new tensor with the same data as the self
tensor but of a different shape
.
Kind: instance method of Tensor
Returns: Tensor
- The tensor with the same data but different shape
...dims
number
the desired size
utils/tensor.transpose(tensor, axes) ⇒ <code> Tensor </code>
Transposes a tensor according to the provided axes.
Kind: static method of utils/tensor
Returns: Tensor
- The transposed tensor.
tensor
any
The input tensor to transpose.
axes
Array
The axes to transpose the tensor along.
utils/tensor.interpolate(input, size, mode, align_corners) ⇒ <code> Tensor </code>
Interpolates an Tensor to the given size.
Kind: static method of utils/tensor
Returns: Tensor
- The interpolated tensor.
input
Tensor
The input tensor to interpolate. Data must be channel-first (i.e., [c, h, w])
size
Array.<number>
The output size of the image
mode
string
The interpolation mode
align_corners
boolean
Whether to align corners.
utils/tensor.mean_pooling(last_hidden_state, attention_mask) ⇒ <code> Tensor </code>
Perform mean pooling of the last hidden state followed by a normalization step.
Kind: static method of utils/tensor
Returns: Tensor
- Returns a new Tensor of shape [batchSize, embedDim].
last_hidden_state
Tensor
Tensor of shape [batchSize, seqLength, embedDim]
attention_mask
Tensor
Tensor of shape [batchSize, seqLength]
utils/tensor.cat(tensors, dim) ⇒ <code> Tensor </code>
Concatenates an array of tensors along a specified dimension.
Kind: static method of utils/tensor
Returns: Tensor
- The concatenated tensor.
tensors
Array.<Tensor>
The array of tensors to concatenate.
dim
number
The dimension to concatenate along.
utils/tensor.stack(tensors, dim) ⇒ <code> Tensor </code>
Stack an array of tensors along a specified dimension.
Kind: static method of utils/tensor
Returns: Tensor
- The stacked tensor.
tensors
Array.<Tensor>
The array of tensors to stack.
dim
number
The dimension to stack along.
utils/tensor.std_mean(input, dim, correction, keepdim) ⇒ <code> Array. < Tensor > </code>
Calculates the standard deviation and mean over the dimensions specified by dim. dim can be a single dimension or null
to reduce over all dimensions.
Kind: static method of utils/tensor
Returns: Array.<Tensor>
- A tuple of (std, mean) tensors.
input
Tensor
the input tenso
dim
number
| null
the dimension to reduce. If None, all dimensions are reduced.
correction
number
difference between the sample size and sample degrees of freedom. Defaults to Bessel's correction, correction=1.
keepdim
boolean
whether the output tensor has dim retained or not.
utils/tensor.mean(input, dim, keepdim) ⇒
Returns the mean value of each row of the input tensor in the given dimension dim.
Kind: static method of utils/tensor
Returns: A new tensor with means taken along the specified dimension.
input
Tensor
the input tensor.
dim
number
| null
the dimension to reduce.
keepdim
boolean
whether the output tensor has dim retained or not.
utils/tensor.dynamicTimeWarping(matrix) ⇒ <code> Array. < Array < number > > </code>
Measures similarity between two temporal sequences (e.g., input audio and output tokens to generate token-level timestamps).
Kind: static method of utils/tensor
matrix
Tensor
utils/tensor.ones(size)
Returns a tensor filled with the scalar value 1, with the shape defined by the variable argument size.
Kind: static method of utils/tensor
size
Array.<number>
A sequence of integers defining the shape of the output tensor.
utils/tensor.ones_like(tensor) ⇒
Returns a tensor filled with the scalar value 1, with the same size as input.
Kind: static method of utils/tensor
Returns: The ones tensor.
tensor
Tensor
The size of input will determine size of the output tensor.
utils/tensor~ONNXTensor : <code> Object </code>
Kind: inner constant of utils/tensor
utils/tensor~reshape(data, dimensions) ⇒ <code> * </code>
Reshapes a 1-dimensional array into an n-dimensional array, according to the provided dimensions.
Kind: inner method of utils/tensor
Returns: *
- The reshaped array.
data
Array.<T>
The input array to reshape.
dimensions
DIM
The target shape/dimensions.
Example
Copied
reshape([10 ], [1 ]); // Type: number[] Value: [10]
reshape([1, 2, 3, 4 ], [2, 2 ]); // Type: number[][] Value: [[1, 2], [3, 4]]
reshape([1, 2, 3, 4, 5, 6, 7, 8], [2, 2, 2]); // Type: number[][][] Value: [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
reshape([1, 2, 3, 4, 5, 6, 7, 8], [4, 2 ]); // Type: number[][] Value: [[1, 2], [3, 4], [5, 6], [7, 8]]
reshape~reshapedArray : <code> any </code>
Kind: inner property of reshape
utils/tensor~DataArray : <code> * </code>
Kind: inner typedef of utils/tensor
utils/tensor~NestArray : <code> * </code>
This creates a nested array of a given type and depth (see examples).
Kind: inner typedef of utils/tensor
Example
Copied
NestArray<string, 1>; // string[]
Example
Copied
NestArray<number, 2>; // number[][]
Example
Copied
NestArray<string, 3>; // string[][][] etc.
Last updated