Generation
utils/generation
Classes, functions, and utilities for generation.
Todo
Describe how to create a custom
GenerationConfig
.static
.LogitsProcessor ⇐
Callable
.ForceTokensLogitsProcessor ⇐
LogitsProcessor
._call(input_ids, logits)
⇒Tensor
.ForcedBOSTokenLogitsProcessor ⇐
LogitsProcessor
._call(input_ids, logits)
⇒Object
.NoRepeatNGramLogitsProcessor ⇐
LogitsProcessor
.getNgrams(prevInputIds)
⇒Map.<string, Array<number>>
.getGeneratedNgrams(bannedNgrams, prevInputIds)
⇒Array.<number>
.calcBannedNgramTokens(prevInputIds)
⇒Array.<number>
._call(input_ids, logits)
⇒Object
.RepetitionPenaltyLogitsProcessor ⇐
LogitsProcessor
._call(input_ids, logits)
⇒Object
.MinLengthLogitsProcessor ⇐
LogitsProcessor
._call(input_ids, logits)
⇒Object
instance
._call(logits, index)
⇒void
.getLogits(logits, index)
⇒Array
.randomSelect(probabilities)
⇒number
static
.getSampler(generation_config)
⇒Sampler
inner
~GreedySampler ⇐
Sampler
.sample(logits, [index])
⇒Array
~MultinomialSampler ⇐
Sampler
.sample(logits, index)
⇒Array
~BeamSearchSampler ⇐
Sampler
.sample(logits, index)
⇒Array
utils/generation.LogitsProcessorList ⇐ <code> Callable </code>
A class representing a list of logits processors. A logits processor is a function that modifies the logits output of a language model. This class provides methods for adding new processors and applying all processors to a batch of logits.
Kind: static class of utils/generation
Extends: Callable
new LogitsProcessorList()
Constructs a new instance of LogitsProcessorList
.
logitsProcessorList.push(item)
Adds a new logits processor to the list.
Kind: instance method of LogitsProcessorList
item
LogitsProcessor
The logits processor function to add.
logitsProcessorList.extend(items)
Adds multiple logits processors to the list.
Kind: instance method of LogitsProcessorList
items
Array.<LogitsProcessor>
The logits processor functions to add.
logitsProcessorList._call(input_ids, batchedLogits)
Applies all logits processors in the list to a batch of logits, modifying them in-place.
Kind: instance method of LogitsProcessorList
input_ids
Array.<number>
The input IDs for the language model.
batchedLogits
Array.<Array<number>>
A 2D array of logits, where each row corresponds to a single input sequence in the batch.
utils/generation.LogitsProcessor ⇐ <code> Callable </code>
Base class for processing logits.
Kind: static class of utils/generation
Extends: Callable
logitsProcessor._call(input_ids, logits)
Apply the processor to the input logits.
Kind: instance abstract method of LogitsProcessor
Throws:
Error
Throws an error if `_call` is not implemented in the subclass.
input_ids
Array
The input ids.
logits
Tensor
The logits to process.
utils/generation.ForceTokensLogitsProcessor ⇐ <code> LogitsProcessor </code>
A logits processor that forces a specific token to be generated by the decoder.
Kind: static class of utils/generation
Extends: LogitsProcessor
.ForceTokensLogitsProcessor ⇐
LogitsProcessor
._call(input_ids, logits)
⇒Tensor
new ForceTokensLogitsProcessor(forced_decoder_ids)
Constructs a new instance of ForceTokensLogitsProcessor
.
forced_decoder_ids
Array
The ids of tokens that should be forced.
forceTokensLogitsProcessor._call(input_ids, logits) ⇒ <code> Tensor </code>
Apply the processor to the input logits.
Kind: instance method of ForceTokensLogitsProcessor
Returns: Tensor
- The processed logits.
input_ids
Array
The input ids.
logits
Tensor
The logits to process.
utils/generation.ForcedBOSTokenLogitsProcessor ⇐ <code> LogitsProcessor </code>
A LogitsProcessor that forces a BOS token at the beginning of the generated sequence.
Kind: static class of utils/generation
Extends: LogitsProcessor
.ForcedBOSTokenLogitsProcessor ⇐
LogitsProcessor
._call(input_ids, logits)
⇒Object
new ForcedBOSTokenLogitsProcessor(bos_token_id)
Create a ForcedBOSTokenLogitsProcessor.
bos_token_id
number
The ID of the beginning-of-sequence token to be forced.
forcedBOSTokenLogitsProcessor._call(input_ids, logits) ⇒ <code> Object </code>
Apply the BOS token forcing to the logits.
Kind: instance method of ForcedBOSTokenLogitsProcessor
Returns: Object
- The logits with BOS token forcing.
input_ids
Array
The input IDs.
logits
Object
The logits.
utils/generation.ForcedEOSTokenLogitsProcessor ⇐ <code> LogitsProcessor </code>
A logits processor that forces end-of-sequence token probability to 1.
Kind: static class of utils/generation
Extends: LogitsProcessor
new ForcedEOSTokenLogitsProcessor(max_length, forced_eos_token_id)
Create a ForcedEOSTokenLogitsProcessor.
max_length
number
Max length of the sequence.
forced_eos_token_id
number
| Array<number>
The ID of the end-of-sequence token to be forced.
forcedEOSTokenLogitsProcessor._call(input_ids, logits)
Apply the processor to input_ids and logits.
Kind: instance method of ForcedEOSTokenLogitsProcessor
input_ids
Array.<number>
The input ids.
logits
Tensor
The logits tensor.
utils/generation.SuppressTokensAtBeginLogitsProcessor ⇐ <code> LogitsProcessor </code>
A LogitsProcessor that suppresses a list of tokens as soon as the generate
function starts generating using begin_index
tokens. This should ensure that the tokens defined by begin_suppress_tokens
at not sampled at the begining of the generation.
Kind: static class of utils/generation
Extends: LogitsProcessor
new SuppressTokensAtBeginLogitsProcessor(begin_suppress_tokens, begin_index)
Create a SuppressTokensAtBeginLogitsProcessor.
begin_suppress_tokens
Array.<number>
The IDs of the tokens to suppress.
begin_index
number
The number of tokens to generate before suppressing tokens.
suppressTokensAtBeginLogitsProcessor._call(input_ids, logits) ⇒ <code> Object </code>
Apply the BOS token forcing to the logits.
Kind: instance method of SuppressTokensAtBeginLogitsProcessor
Returns: Object
- The logits with BOS token forcing.
input_ids
Array
The input IDs.
logits
Object
The logits.
utils/generation.WhisperTimeStampLogitsProcessor ⇐ <code> LogitsProcessor </code>
A LogitsProcessor that handles adding timestamps to generated text.
Kind: static class of utils/generation
Extends: LogitsProcessor
new WhisperTimeStampLogitsProcessor(generate_config)
Constructs a new WhisperTimeStampLogitsProcessor.
generate_config
Object
The config object passed to the generate()
method of a transformer model.
generate_config.eos_token_id
number
The ID of the end-of-sequence token.
generate_config.no_timestamps_token_id
number
The ID of the token used to indicate that a token should not have a timestamp.
[generate_config.forced_decoder_ids]
Array.<Array<number>>
An array of two-element arrays representing decoder IDs that are forced to appear in the output. The second element of each array indicates whether the token is a timestamp.
[generate_config.max_initial_timestamp_index]
number
The maximum index at which an initial timestamp can appear.
whisperTimeStampLogitsProcessor._call(input_ids, logits) ⇒ <code> Tensor </code>
Modify the logits to handle timestamp tokens.
Kind: instance method of WhisperTimeStampLogitsProcessor
Returns: Tensor
- The modified logits.
input_ids
Array
The input sequence of tokens.
logits
Tensor
The logits output by the model.
utils/generation.NoRepeatNGramLogitsProcessor ⇐ <code> LogitsProcessor </code>
A logits processor that disallows ngrams of a certain size to be repeated.
Kind: static class of utils/generation
Extends: LogitsProcessor
.NoRepeatNGramLogitsProcessor ⇐
LogitsProcessor
.getNgrams(prevInputIds)
⇒Map.<string, Array<number>>
.getGeneratedNgrams(bannedNgrams, prevInputIds)
⇒Array.<number>
.calcBannedNgramTokens(prevInputIds)
⇒Array.<number>
._call(input_ids, logits)
⇒Object
new NoRepeatNGramLogitsProcessor(no_repeat_ngram_size)
Create a NoRepeatNGramLogitsProcessor.
no_repeat_ngram_size
number
The no-repeat-ngram size. All ngrams of this size can only occur once.
noRepeatNGramLogitsProcessor.getNgrams(prevInputIds) ⇒ <code> Map. < string, Array < number > > </code>
Generate n-grams from a sequence of token ids.
Kind: instance method of NoRepeatNGramLogitsProcessor
Returns: Map.<string, Array<number>>
- Map of generated n-grams
prevInputIds
Array.<number>
List of previous input ids
noRepeatNGramLogitsProcessor.getGeneratedNgrams(bannedNgrams, prevInputIds) ⇒ <code> Array. < number > </code>
Generate n-grams from a sequence of token ids.
Kind: instance method of NoRepeatNGramLogitsProcessor
Returns: Array.<number>
- Map of generated n-grams
bannedNgrams
Map.<string, Array<number>>
Map of banned n-grams
prevInputIds
Array.<number>
List of previous input ids
noRepeatNGramLogitsProcessor.calcBannedNgramTokens(prevInputIds) ⇒ <code> Array. < number > </code>
Calculate banned n-gram tokens
Kind: instance method of NoRepeatNGramLogitsProcessor
Returns: Array.<number>
- Map of generated n-grams
prevInputIds
Array.<number>
List of previous input ids
noRepeatNGramLogitsProcessor._call(input_ids, logits) ⇒ <code> Object </code>
Apply the no-repeat-ngram processor to the logits.
Kind: instance method of NoRepeatNGramLogitsProcessor
Returns: Object
- The logits with no-repeat-ngram processing.
input_ids
Array
The input IDs.
logits
Object
The logits.
utils/generation.RepetitionPenaltyLogitsProcessor ⇐ <code> LogitsProcessor </code>
A logits processor that penalises repeated output tokens.
Kind: static class of utils/generation
Extends: LogitsProcessor
.RepetitionPenaltyLogitsProcessor ⇐
LogitsProcessor
._call(input_ids, logits)
⇒Object
new RepetitionPenaltyLogitsProcessor(penalty)
Create a RepetitionPenaltyLogitsProcessor.
penalty
number
The penalty to apply for repeated tokens.
repetitionPenaltyLogitsProcessor._call(input_ids, logits) ⇒ <code> Object </code>
Apply the repetition penalty to the logits.
Kind: instance method of RepetitionPenaltyLogitsProcessor
Returns: Object
- The logits with repetition penalty processing.
input_ids
Array
The input IDs.
logits
Object
The logits.
utils/generation.MinLengthLogitsProcessor ⇐ <code> LogitsProcessor </code>
A logits processor that enforces a minimum number of tokens.
Kind: static class of utils/generation
Extends: LogitsProcessor
.MinLengthLogitsProcessor ⇐
LogitsProcessor
._call(input_ids, logits)
⇒Object
new MinLengthLogitsProcessor(min_length, eos_token_id)
Create a MinLengthLogitsProcessor.
min_length
number
The minimum length below which the score of eos_token_id
is set to negative infinity.
eos_token_id
number
| Array<number>
The ID/IDs of the end-of-sequence token.
minLengthLogitsProcessor._call(input_ids, logits) ⇒ <code> Object </code>
Apply logit processor.
Kind: instance method of MinLengthLogitsProcessor
Returns: Object
- The processed logits.
input_ids
Array
The input IDs.
logits
Object
The logits.
utils/generation.MinNewTokensLengthLogitsProcessor ⇐ <code> LogitsProcessor </code>
A logits processor that enforces a minimum number of new tokens.
Kind: static class of utils/generation
Extends: LogitsProcessor
new MinNewTokensLengthLogitsProcessor(prompt_length_to_skip, min_new_tokens, eos_token_id)
Create a MinNewTokensLengthLogitsProcessor.
prompt_length_to_skip
number
The input tokens length.
min_new_tokens
number
The minimum new tokens length below which the score of eos_token_id
is set to negative infinity.
eos_token_id
number
| Array<number>
The ID/IDs of the end-of-sequence token.
minNewTokensLengthLogitsProcessor._call(input_ids, logits) ⇒ <code> Object </code>
Apply logit processor.
Kind: instance method of MinNewTokensLengthLogitsProcessor
Returns: Object
- The processed logits.
input_ids
Array
The input IDs.
logits
Object
The logits.
utils/generation.GenerationConfig
Class that holds a configuration for a generation task.
Kind: static class of utils/generation
new GenerationConfig([kwargs])
Create a GenerationConfig object
[kwargs]
Object
{}
The configuration parameters. If not set, the default values are used.
[kwargs.max_length]
number
20
The maximum length the generated tokens can have. Corresponds to the length of the input prompt + max_new_tokens
. Its effect is overridden by max_new_tokens
, if also set.
[kwargs.max_new_tokens]
number
The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt.
[kwargs.min_length]
number
0
The minimum length of the sequence to be generated. Corresponds to the length of the input prompt + min_new_tokens
. Its effect is overridden by min_new_tokens
, if also set.
[kwargs.min_new_tokens]
number
The minimum numbers of tokens to generate, ignoring the number of tokens in the prompt.
[kwargs.early_stopping]
boolean
| "never"
false
Controls the stopping condition for beam-based methods, like beam-search. It accepts the following values:
true
, where the generation stops as soon as there arenum_beams
complete candidates;false
, where an heuristic is applied and the generation stops when is it very unlikely to find better candidates;"never"
, where the beam search procedure only stops when there cannot be better candidates (canonical beam search algorithm).
[kwargs.max_time]
number
The maximum amount of time you allow the computation to run for in seconds. Generation will still finish the current pass after allocated time has been passed.
[kwargs.do_sample]
boolean
false
Whether or not to use sampling; use greedy decoding otherwise.
[kwargs.num_beams]
number
1
Number of beams for beam search. 1 means no beam search.
[kwargs.num_beam_groups]
number
1
Number of groups to divide num_beams
into in order to ensure diversity among different groups of beams. See this paper for more details.
[kwargs.penalty_alpha]
number
The values balance the model confidence and the degeneration penalty in contrastive search decoding.
[kwargs.use_cache]
boolean
true
Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
[kwargs.temperature]
number
1.0
The value used to modulate the next token probabilities.
[kwargs.top_k]
number
50
The number of highest probability vocabulary tokens to keep for top-k-filtering.
[kwargs.top_p]
number
1.0
If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p
or higher are kept for generation.
[kwargs.typical_p]
number
1.0
Local typicality measures how similar the conditional probability of predicting a target token next is to the expected conditional probability of predicting a random token next, given the partial text already generated. If set to float < 1, the smallest set of the most locally typical tokens with probabilities that add up to typical_p
or higher are kept for generation. See this paper for more details.
[kwargs.epsilon_cutoff]
number
0.0
If set to float strictly between 0 and 1, only tokens with a conditional probability greater than epsilon_cutoff
will be sampled. In the paper, suggested values range from 3e-4 to 9e-4, depending on the size of the model. See Truncation Sampling as Language Model Desmoothing for more details.
[kwargs.eta_cutoff]
number
0.0
Eta sampling is a hybrid of locally typical sampling and epsilon sampling. If set to float strictly between 0 and 1, a token is only considered if it is greater than either eta_cutoff
or sqrt(eta_cutoff) * exp(-entropy(softmax(next_token_logits)))
. The latter term is intuitively the expected next token probability, scaled by sqrt(eta_cutoff)
. In the paper, suggested values range from 3e-4 to 2e-3, depending on the size of the model. See Truncation Sampling as Language Model Desmoothing for more details.
[kwargs.diversity_penalty]
number
0.0
This value is subtracted from a beam's score if it generates a token same as any beam from other group at a particular time. Note that diversity_penalty
is only effective if group beam search
is enabled.
[kwargs.repetition_penalty]
number
1.0
The parameter for repetition penalty. 1.0 means no penalty. See this paper for more details.
[kwargs.encoder_repetition_penalty]
number
1.0
The paramater for encoder_repetition_penalty. An exponential penalty on sequences that are not in the original input. 1.0 means no penalty.
[kwargs.length_penalty]
number
1.0
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log likelihood of the sequence (i.e. negative), length_penalty
> 0.0 promotes longer sequences, while length_penalty
< 0.0 encourages shorter sequences.
[kwargs.no_repeat_ngram_size]
number
0
If set to int > 0, all ngrams of that size can only occur once.
[kwargs.bad_words_ids]
Array.<Array<number>>
List of token ids that are not allowed to be generated. In order to get the token ids of the words that should not appear in the generated text, use (await tokenizer(bad_words, {add_prefix_space: true, add_special_tokens: false})).input_ids
.
[kwargs.force_words_ids]
Array<Array<number>>
| Array<Array<Array<number>>>
List of token ids that must be generated. If given a number[][]
, this is treated as a simple list of words that must be included, the opposite to bad_words_ids
. If given number[][][]
, this triggers a disjunctive constraint, where one can allow different forms of each word.
[kwargs.renormalize_logits]
boolean
false
Whether to renormalize the logits after applying all the logits processors or warpers (including the custom ones). It's highly recommended to set this flag to true
as the search algorithms suppose the score logits are normalized but some logit processors or warpers break the normalization.
[kwargs.constraints]
Array.<Object>
Custom constraints that can be added to the generation to ensure that the output will contain the use of certain tokens as defined by Constraint
objects, in the most sensible way possible.
[kwargs.forced_bos_token_id]
number
The id of the token to force as the first generated token after the decoder_start_token_id
. Useful for multilingual models like mBART where the first generated token needs to be the target language token.
[kwargs.forced_eos_token_id]
number
| Array<number>
The id of the token to force as the last generated token when max_length
is reached. Optionally, use a list to set multiple end-of-sequence tokens.
[kwargs.remove_invalid_values]
boolean
false
Whether to remove possible nan and inf outputs of the model to prevent the generation method to crash. Note that using remove_invalid_values
can slow down generation.
[kwargs.exponential_decay_length_penalty]
Array.<number>
This Tuple adds an exponentially increasing length penalty, after a certain amount of tokens have been generated. The tuple shall consist of: (start_index, decay_factor)
where start_index
indicates where penalty starts and decay_factor
represents the factor of exponential decay.
[kwargs.suppress_tokens]
Array.<number>
A list of tokens that will be suppressed at generation. The SupressTokens
logit processor will set their log probs to -inf
so that they are not sampled.
[kwargs.begin_suppress_tokens]
Array.<number>
A list of tokens that will be suppressed at the beginning of the generation. The SupressBeginTokens
logit processor will set their log probs to -inf
so that they are not sampled.
[kwargs.forced_decoder_ids]
Array.<Array<number>>
A list of pairs of integers which indicates a mapping from generation indices to token indices that will be forced before sampling. For example, [[1, 123]]
means the second generated token will always be a token of index 123.
[kwargs.num_return_sequences]
number
1
The number of independently computed returned sequences for each element in the batch.
[kwargs.output_attentions]
boolean
false
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more details.
[kwargs.output_hidden_states]
boolean
false
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more details.
[kwargs.output_scores]
boolean
false
Whether or not to return the prediction scores. See scores
under returned tensors for more details.
[kwargs.return_dict_in_generate]
boolean
false
Whether or not to return a ModelOutput
instead of a plain tuple.
[kwargs.pad_token_id]
number
The id of the padding token.
[kwargs.bos_token_id]
number
The id of the beginning-of-sequence token.
[kwargs.eos_token_id]
number
| Array<number>
The id of the end-of-sequence token. Optionally, use a list to set multiple end-of-sequence tokens.
[kwargs.encoder_no_repeat_ngram_size]
number
0
If set to int > 0, all ngrams of that size that occur in the encoder_input_ids
cannot occur in the decoder_input_ids
.
[kwargs.decoder_start_token_id]
number
If an encoder-decoder model starts decoding with a different token than bos, the id of that token.
[kwargs.generation_kwargs]
Object
{}
Additional generation kwargs will be forwarded to the generate
function of the model. Kwargs that are not present in generate
's signature will be used in the model forward pass.
utils/generation.Sampler
Sampler is a base class for all sampling methods used for text generation.
Kind: static class of utils/generation
instance
._call(logits, index)
⇒void
.getLogits(logits, index)
⇒Array
.randomSelect(probabilities)
⇒number
static
.getSampler(generation_config)
⇒Sampler
new Sampler(generation_config)
Creates a new Sampler object with the specified generation config.
generation_config
GenerationConfig
The generation config.
sampler._call(logits, index) ⇒ <code> void </code>
Executes the sampler, using the specified logits.
Kind: instance method of Sampler
logits
Tensor
index
number
sampler.sample(logits, index)
Abstract method for sampling the logits.
Kind: instance method of Sampler
Throws:
Error
logits
Tensor
index
number
sampler.getLogits(logits, index) ⇒ <code> Array </code>
Returns the specified logits as an array, with temperature applied.
Kind: instance method of Sampler
logits
Tensor
index
number
sampler.randomSelect(probabilities) ⇒ <code> number </code>
Selects an item randomly based on the specified probabilities.
Kind: instance method of Sampler
Returns: number
- The index of the selected item.
probabilities
Array
An array of probabilities to use for selection.
Sampler.getSampler(generation_config) ⇒ <code> Sampler </code>
Returns a Sampler object based on the specified options.
Kind: static method of Sampler
Returns: Sampler
- A Sampler object.
generation_config
GenerationConfig
An object containing options for the sampler.
utils/generation~GreedySampler ⇐ <code> Sampler </code>
Class representing a Greedy Sampler.
Kind: inner class of utils/generation
Extends: Sampler
greedySampler.sample(logits, [index]) ⇒ <code> Array </code>
Sample the maximum probability of a given logits tensor.
Kind: instance method of GreedySampler
Returns: Array
- An array with a single tuple, containing the index of the maximum value and a meaningless score (since this is a greedy search).
logits
Tensor
[index]
number
-1
utils/generation~MultinomialSampler ⇐ <code> Sampler </code>
Class representing a MultinomialSampler.
Kind: inner class of utils/generation
Extends: Sampler
multinomialSampler.sample(logits, index) ⇒ <code> Array </code>
Sample from the logits.
Kind: instance method of MultinomialSampler
logits
Tensor
index
number
utils/generation~BeamSearchSampler ⇐ <code> Sampler </code>
Class representing a BeamSearchSampler.
Kind: inner class of utils/generation
Extends: Sampler
beamSearchSampler.sample(logits, index) ⇒ <code> Array </code>
Sample from the logits.
Kind: instance method of BeamSearchSampler
logits
Tensor
index
number
Last updated