Models
models
import { AutoModel, AutoTokenizer } from '@xenova/transformers';
let tokenizer = await AutoTokenizer.from_pretrained('Xenova/bert-base-uncased');
let model = await AutoModel.from_pretrained('Xenova/bert-base-uncased');
let inputs = await tokenizer('I love transformers!');
let { logits } = await model(inputs);
// Tensor {
// data: Float32Array(183132) [-7.117443084716797, -7.107812881469727, -7.092104911804199, ...]
// dims: (3) [1, 6, 30522],
// type: "float32",
// size: 183132,
// }models.PreTrainedModel
new PreTrainedModel(config, session)
Param
Type
Description
preTrainedModel.dispose() β <code> Promise. < Array < unknown > > </code>
preTrainedModel._call(model_inputs) β <code> Promise. < Object > </code>
Param
Type
Description
preTrainedModel.forward(model_inputs) β <code> Promise. < Object > </code>
Param
Type
Description
preTrainedModel._get_generation_config(generation_config) β <code> GenerationConfig </code>
Param
Type
Description
preTrainedModel.groupBeams(beams) β <code> Array </code>
Param
Type
Description
preTrainedModel.getPastKeyValues(decoderResults, pastKeyValues) β <code> Object </code>
Param
Type
Description
preTrainedModel.getAttentions(decoderResults) β <code> Object </code>
Param
Type
Description
preTrainedModel.addPastKeyValues(decoderFeeds, pastKeyValues)
Param
Type
Description
PreTrainedModel.from_pretrained(pretrained_model_name_or_path, options) β <code> Promise. < PreTrainedModel > </code>
Param
Type
Description
models.BaseModelOutput
new BaseModelOutput(output)
Param
Type
Description
models.BertForMaskedLM
bertForMaskedLM._call(model_inputs) β <code> Promise. < MaskedLMOutput > </code>
Param
Type
Description
models.BertForSequenceClassification
bertForSequenceClassification._call(model_inputs) β <code> Promise. < SequenceClassifierOutput > </code>
Param
Type
Description
models.BertForTokenClassification
bertForTokenClassification._call(model_inputs) β <code> Promise. < TokenClassifierOutput > </code>
Param
Type
Description
models.BertForQuestionAnswering
bertForQuestionAnswering._call(model_inputs) β <code> Promise. < QuestionAnsweringModelOutput > </code>
Param
Type
Description
models.CamembertModel
models.CamembertForMaskedLM
camembertForMaskedLM._call(model_inputs) β <code> Promise. < MaskedLMOutput > </code>
Param
Type
Description
models.CamembertForSequenceClassification
camembertForSequenceClassification._call(model_inputs) β <code> Promise. < SequenceClassifierOutput > </code>
Param
Type
Description
models.CamembertForTokenClassification
camembertForTokenClassification._call(model_inputs) β <code> Promise. < TokenClassifierOutput > </code>
Param
Type
Description
models.CamembertForQuestionAnswering
camembertForQuestionAnswering._call(model_inputs) β <code> Promise. < QuestionAnsweringModelOutput > </code>
Param
Type
Description
models.DebertaModel
models.DebertaForMaskedLM
debertaForMaskedLM._call(model_inputs) β <code> Promise. < MaskedLMOutput > </code>
Param
Type
Description
models.DebertaForSequenceClassification
debertaForSequenceClassification._call(model_inputs) β <code> Promise. < SequenceClassifierOutput > </code>
Param
Type
Description
models.DebertaForTokenClassification
debertaForTokenClassification._call(model_inputs) β <code> Promise. < TokenClassifierOutput > </code>
Param
Type
Description
models.DebertaForQuestionAnswering
debertaForQuestionAnswering._call(model_inputs) β <code> Promise. < QuestionAnsweringModelOutput > </code>
Param
Type
Description
models.DebertaV2Model
models.DebertaV2ForMaskedLM
debertaV2ForMaskedLM._call(model_inputs) β <code> Promise. < MaskedLMOutput > </code>
Param
Type
Description
models.DebertaV2ForSequenceClassification
debertaV2ForSequenceClassification._call(model_inputs) β <code> Promise. < SequenceClassifierOutput > </code>
Param
Type
Description
models.DebertaV2ForTokenClassification
debertaV2ForTokenClassification._call(model_inputs) β <code> Promise. < TokenClassifierOutput > </code>
Param
Type
Description
models.DebertaV2ForQuestionAnswering
debertaV2ForQuestionAnswering._call(model_inputs) β <code> Promise. < QuestionAnsweringModelOutput > </code>
Param
Type
Description
models.DistilBertForSequenceClassification
distilBertForSequenceClassification._call(model_inputs) β <code> Promise. < SequenceClassifierOutput > </code>
Param
Type
Description
models.DistilBertForTokenClassification
distilBertForTokenClassification._call(model_inputs) β <code> Promise. < TokenClassifierOutput > </code>
Param
Type
Description
models.DistilBertForQuestionAnswering
distilBertForQuestionAnswering._call(model_inputs) β <code> Promise. < QuestionAnsweringModelOutput > </code>
Param
Type
Description
models.DistilBertForMaskedLM
distilBertForMaskedLM._call(model_inputs) β <code> Promise. < MaskedLMOutput > </code>
Param
Type
Description
models.MobileBertForMaskedLM
mobileBertForMaskedLM._call(model_inputs) β <code> Promise. < MaskedLMOutput > </code>
Param
Type
Description
models.MobileBertForSequenceClassification
mobileBertForSequenceClassification._call(model_inputs) β <code> Promise. < SequenceClassifierOutput > </code>
Param
Type
Description
models.MobileBertForQuestionAnswering
mobileBertForQuestionAnswering._call(model_inputs) β <code> Promise. < QuestionAnsweringModelOutput > </code>
Param
Type
Description
models.MPNetModel
models.MPNetForMaskedLM
mpNetForMaskedLM._call(model_inputs) β <code> Promise. < MaskedLMOutput > </code>
Param
Type
Description
models.MPNetForSequenceClassification
mpNetForSequenceClassification._call(model_inputs) β <code> Promise. < SequenceClassifierOutput > </code>
Param
Type
Description
models.MPNetForTokenClassification
mpNetForTokenClassification._call(model_inputs) β <code> Promise. < TokenClassifierOutput > </code>
Param
Type
Description
models.MPNetForQuestionAnswering
mpNetForQuestionAnswering._call(model_inputs) β <code> Promise. < QuestionAnsweringModelOutput > </code>
Param
Type
Description
models.T5ForConditionalGeneration
new T5ForConditionalGeneration(config, session, decoder_merged_session, generation_config)
Param
Type
Description
models.LongT5PreTrainedModel
models.LongT5Model
models.LongT5ForConditionalGeneration
new LongT5ForConditionalGeneration(config, session, decoder_merged_session, generation_config)
Param
Type
Description
models.MT5ForConditionalGeneration
new MT5ForConditionalGeneration(config, session, decoder_merged_session, generation_config)
Param
Type
Description
models.BartModel
models.BartForConditionalGeneration
new BartForConditionalGeneration(config, session, decoder_merged_session, generation_config)
Param
Type
Description
models.BartForSequenceClassification
bartForSequenceClassification._call(model_inputs) β <code> Promise. < SequenceClassifierOutput > </code>
Param
Type
Description
models.MBartModel
models.MBartForConditionalGeneration
new MBartForConditionalGeneration(config, session, decoder_merged_session, generation_config)
Param
Type
Description
models.MBartForSequenceClassification
mBartForSequenceClassification._call(model_inputs) β <code> Promise. < SequenceClassifierOutput > </code>
Param
Type
Description
models.MBartForCausalLM
new MBartForCausalLM(config, decoder_merged_session, generation_config)
Param
Type
Description
models.BlenderbotModel
models.BlenderbotForConditionalGeneration
new BlenderbotForConditionalGeneration(config, session, decoder_merged_session, generation_config)
Param
Type
Description
models.BlenderbotSmallModel
models.BlenderbotSmallForConditionalGeneration
new BlenderbotSmallForConditionalGeneration(config, session, decoder_merged_session, generation_config)
Param
Type
Description
models.RobertaForMaskedLM
robertaForMaskedLM._call(model_inputs) β <code> Promise. < MaskedLMOutput > </code>
Param
Type
Description
models.RobertaForSequenceClassification
robertaForSequenceClassification._call(model_inputs) β <code> Promise. < SequenceClassifierOutput > </code>
Param
Type
Description
models.RobertaForTokenClassification
robertaForTokenClassification._call(model_inputs) β <code> Promise. < TokenClassifierOutput > </code>
Param
Type
Description
models.RobertaForQuestionAnswering
robertaForQuestionAnswering._call(model_inputs) β <code> Promise. < QuestionAnsweringModelOutput > </code>
Param
Type
Description
models.XLMPreTrainedModel
models.XLMModel
models.XLMWithLMHeadModel
xlmWithLMHeadModel._call(model_inputs) β <code> Promise. < MaskedLMOutput > </code>
Param
Type
Description
models.XLMForSequenceClassification
xlmForSequenceClassification._call(model_inputs) β <code> Promise. < SequenceClassifierOutput > </code>
Param
Type
Description
models.XLMForTokenClassification
xlmForTokenClassification._call(model_inputs) β <code> Promise. < TokenClassifierOutput > </code>
Param
Type
Description
models.XLMForQuestionAnswering
xlmForQuestionAnswering._call(model_inputs) β <code> Promise. < QuestionAnsweringModelOutput > </code>
Param
Type
Description
models.XLMRobertaForMaskedLM
xlmRobertaForMaskedLM._call(model_inputs) β <code> Promise. < MaskedLMOutput > </code>
Param
Type
Description
models.XLMRobertaForSequenceClassification
xlmRobertaForSequenceClassification._call(model_inputs) β <code> Promise. < SequenceClassifierOutput > </code>
Param
Type
Description
models.XLMRobertaForTokenClassification
xlmRobertaForTokenClassification._call(model_inputs) β <code> Promise. < TokenClassifierOutput > </code>
Param
Type
Description
models.XLMRobertaForQuestionAnswering
xlmRobertaForQuestionAnswering._call(model_inputs) β <code> Promise. < QuestionAnsweringModelOutput > </code>
Param
Type
Description
models.WhisperModel
models.WhisperForConditionalGeneration
new WhisperForConditionalGeneration(config, session, decoder_merged_session, generation_config)
Param
Type
Description
whisperForConditionalGeneration.generate(inputs, generation_config, logits_processor) β <code> Promise. < Object > </code>
Param
Type
Default
Description
whisperForConditionalGeneration._extract_token_timestamps(generate_outputs, alignment_heads, [num_frames], [time_precision]) β <code> Tensor </code>
Param
Type
Default
Description
models.VisionEncoderDecoderModel
new VisionEncoderDecoderModel(config, session, decoder_merged_session, generation_config)
Param
Type
Description
models.CLIPModel
models.CLIPTextModelWithProjection
CLIPTextModelWithProjection.from_pretrained() : <code> PreTrainedModel.from_pretrained </code>
models.CLIPVisionModelWithProjection
CLIPVisionModelWithProjection.from_pretrained() : <code> PreTrainedModel.from_pretrained </code>
models.GPT2PreTrainedModel
new GPT2PreTrainedModel(config, session, generation_config)
Param
Type
Description
models.GPT2LMHeadModel
models.GPTNeoPreTrainedModel
new GPTNeoPreTrainedModel(config, session, generation_config)
Param
Type
Description
models.GPTNeoXPreTrainedModel
new GPTNeoXPreTrainedModel(config, session, generation_config)
Param
Type
Description
models.GPTJPreTrainedModel
new GPTJPreTrainedModel(config, session, generation_config)
Param
Type
Description
models.GPTBigCodePreTrainedModel
new GPTBigCodePreTrainedModel(config, session, generation_config)
Param
Type
Description
models.CodeGenPreTrainedModel
new CodeGenPreTrainedModel(config, session, generation_config)
Param
Type
Description
models.CodeGenModel
models.CodeGenForCausalLM
models.LlamaPreTrainedModel
new LlamaPreTrainedModel(config, session, generation_config)
Param
Type
Description
models.LlamaModel
models.BloomPreTrainedModel
new BloomPreTrainedModel(config, session, generation_config)
Param
Type
Description
models.BloomModel
models.BloomForCausalLM
models.MptPreTrainedModel
new MptPreTrainedModel(config, session, generation_config)
Param
Type
Description
models.MptModel
models.MptForCausalLM
models.OPTPreTrainedModel
new OPTPreTrainedModel(config, session, generation_config)
Param
Type
Description
models.OPTModel
models.OPTForCausalLM
models.DetrObjectDetectionOutput
new DetrObjectDetectionOutput(output)
Param
Type
Description
models.DetrSegmentationOutput
new DetrSegmentationOutput(output)
Param
Type
Description
models.ResNetPreTrainedModel
models.ResNetModel
models.ResNetForImageClassification
resNetForImageClassification._call(model_inputs)
Param
Type
models.DonutSwinModel
models.YolosObjectDetectionOutput
new YolosObjectDetectionOutput(output)
Param
Type
Description
models.SamImageSegmentationOutput
new SamImageSegmentationOutput(output)
Param
Type
Description
models.MarianMTModel
new MarianMTModel(config, session, decoder_merged_session, generation_config)
Param
Type
Description
models.M2M100ForConditionalGeneration
new M2M100ForConditionalGeneration(config, session, decoder_merged_session, generation_config)
Param
Type
Description
models.Wav2Vec2Model
models.WavLMPreTrainedModel
models.WavLMModel
models.WavLMForCTC
wavLMForCTC._call(model_inputs)
Param
Type
Description
models.WavLMForSequenceClassification
wavLMForSequenceClassification._call(model_inputs) β <code> Promise. < SequenceClassifierOutput > </code>
Param
Type
Description
models.SpeechT5PreTrainedModel
models.SpeechT5Model
models.SpeechT5ForSpeechToText
models.SpeechT5ForTextToSpeech
new SpeechT5ForTextToSpeech(config, session, decoder_merged_session, generation_config)
Param
Type
Description
speechT5ForTextToSpeech.generate_speech(input_values, speaker_embeddings, options) β <code> Promise. < SpeechOutput > </code>
Param
Type
Default
Description
models.SpeechT5HifiGan
models.PretrainedMixin
pretrainedMixin.MODEL_CLASS_MAPPINGS : <code> * </code>
pretrainedMixin.BASE_IF_FAIL
PretrainedMixin.from_pretrained() : <code> PreTrainedModel.from_pretrained </code>
models.AutoModel
models.AutoModelForSequenceClassification
models.AutoModelForTokenClassification
models.AutoModelForSeq2SeqLM
models.AutoModelForSpeechSeq2Seq
models.AutoModelForTextToSpectrogram
models.AutoModelForCausalLM
models.AutoModelForMaskedLM
models.AutoModelForQuestionAnswering
models.AutoModelForVision2Seq
models.AutoModelForImageClassification
models.AutoModelForImageSegmentation
models.AutoModelForObjectDetection
models.AutoModelForMaskGeneration
models.Seq2SeqLMOutput
new Seq2SeqLMOutput(output)
Param
Type
Description
models.SequenceClassifierOutput
new SequenceClassifierOutput(output)
Param
Type
Description
models.TokenClassifierOutput
new TokenClassifierOutput(output)
Param
Type
Description
models.MaskedLMOutput
new MaskedLMOutput(output)
Param
Type
Description
models.QuestionAnsweringModelOutput
new QuestionAnsweringModelOutput(output)
Param
Type
Description
models.CausalLMOutput
new CausalLMOutput(output)
Param
Type
Description
models.CausalLMOutputWithPast
new CausalLMOutputWithPast(output)
Param
Type
Description
models~TypedArray : <code> * </code>
models~DecoderOutput β <code> Promise. < (Array < Array < number > > |EncoderDecoderOutput|DecoderOutput) > </code>
Param
Type
Default
Description
models~WhisperGenerationConfig : <code> Object </code>
Name
Type
Default
Description
models~SpeechOutput : <code> Object </code>
Name
Type
Description
Last updated