Quantization
Quantization
FuriosaAIQuantizer
class optimum.furiosa.FuriosaAIQuantizer
( model_path: Path config: Optional = None )
Handles the FuriosaAI quantization process for models shared on huggingface.co/models.
compute_ranges
( )
Computes the quantization ranges.
fit
( dataset: Dataset calibration_config: CalibrationConfig batch_size: int = 1 )
Parameters
dataset (
Dataset) β The dataset to use when performing the calibration step.calibration_config (~CalibrationConfig) β The configuration containing the parameters related to the calibration step.
batch_size (
int, optional, defaults to 1) β The batch size to use when collecting the quantization ranges values.
Performs the calibration step and computes the quantization ranges.
from_pretrained
( model_or_path: Union file_name: Optional = None )
Parameters
model_or_path (
Union[FuriosaAIModel, str, Path]) β Can be either:A path to a saved exported ONNX Intermediate Representation (IR) model, e.g., `./my_model_directory/.
Or an
FuriosaAIModelModelForXXclass, e.g.,FuriosaAIModelModelForImageClassification.
file_name(
Optional[str], optional) β Overwrites the default model file name from"model.onnx"tofile_name. This allows you to load different model files from the same repository or directory.
Instantiates a FuriosaAIQuantizer from a model path.
get_calibration_dataset
( dataset_name: str num_samples: int = 100 dataset_config_name: Optional = None dataset_split: Optional = None preprocess_function: Optional = None preprocess_batch: bool = True seed: int = 2016 use_auth_token: bool = False )
Parameters
dataset_name (
str) β The dataset repository name on the Hugging Face Hub or path to a local directory containing data files to load to use for the calibration step.num_samples (
int, optional, defaults to 100) β The maximum number of samples composing the calibration dataset.dataset_config_name (
Optional[str], optional) β The name of the dataset configuration.dataset_split (
Optional[str], optional) β Which split of the dataset to use to perform the calibration step.preprocess_function (
Optional[Callable], optional) β Processing function to apply to each example after loading dataset.preprocess_batch (
bool, optional, defaults toTrue) β Whether thepreprocess_functionshould be batched.seed (
int, optional, defaults to 2016) β The random seed to use when shuffling the calibration dataset.use_auth_token (
bool, optional, defaults toFalse) β Whether to use the token generated when runningtransformers-cli login(necessary for some datasets like ImageNet).
Creates the calibration datasets.Dataset to use for the post-training static quantization calibration step.
partial_fit
( dataset: Dataset calibration_config: CalibrationConfig batch_size: int = 1 )
Parameters
dataset (
Dataset) β The dataset to use when performing the calibration step.calibration_config (
CalibrationConfig) β The configuration containing the parameters related to the calibration step.batch_size (
int, optional, defaults to 1) β The batch size to use when collecting the quantization ranges values.
Performs the calibration step and collects the quantization ranges without computing them.
quantize
( quantization_config: QuantizationConfig save_dir: Union file_suffix: Optional = 'quantized' calibration_tensors_range: Optional = None )
Parameters
quantization_config (
QuantizationConfig) β The configuration containing the parameters related to quantization.save_dir (
Union[str, Path]) β The directory where the quantized model should be saved.file_suffix (
Optional[str], optional, defaults to"quantized") β The file_suffix used to save the quantized model.calibration_tensors_range (
Optional[Dict[NodeName, Tuple[float, float]]], optional) β The dictionary mapping the nodes name to their quantization ranges, used and required only when applying static quantization.
Quantizes a model given the optimization specifications defined in quantization_config.
Last updated