The TasksManager
The Tasks Manager
Exporting a model from one framework to some format (also called backend here) involves specifying inputs and outputs information that the export function needs. The way optimum.exporters
is structured for each backend is as follows:
Configuration classes containing the information for each model to perform the export.
Exporting functions using the proper configuration for the model to export.
The role of the TasksManager is to be the main entry-point to load a model given a name and a task, and to get the proper configuration for a given (architecture, backend) couple. That way, there is a centralized place to register the task -> model class
and (architecture, backend) -> configuration
mappings. This allows the export functions to use this, and to rely on the various checks it provides.
Task names
The tasks supported might depend on the backend, but here are the mappings between a task name and the auto class for both PyTorch and TensorFlow.
It is possible to know which tasks are supported for a model for a given backend, by doing:
Copied
PyTorch
text-generation
, text-generation-with-past
AutoModelForCausalLM
feature-extraction
, feature-extraction-with-past
AutoModel
fill-mask
AutoModelForMaskedLM
question-answering
AutoModelForQuestionAnswering
text2text-generation
, text2text-generation-with-past
AutoModelForSeq2SeqLM
text-classification
AutoModelForSequenceClassification
token-classification
AutoModelForTokenClassification
multiple-choice
AutoModelForMultipleChoice
image-classification
AutoModelForImageClassification
object-detection
AutoModelForObjectDetection
image-segmentation
AutoModelForImageSegmentation
masked-im
AutoModelForMaskedImageModeling
semantic-segmentation
AutoModelForSemanticSegmentation
automatic-speech-recognition
AutoModelForSpeechSeq2Seq
TensorFlow
text-generation
, text-generation-with-past
TFAutoModelForCausalLM
default
, default-with-past
TFAutoModel
fill-mask
TFAutoModelForMaskedLM
question-answering
TFAutoModelForQuestionAnswering
text2text-generation
, text2text-generation-with-past
TFAutoModelForSeq2SeqLM
text-classification
TFAutoModelForSequenceClassification
token-classification
TFAutoModelForTokenClassification
multiple-choice
TFAutoModelForMultipleChoice
semantic-segmentation
TFAutoModelForSemanticSegmentation
Reference
class optimum.exporters.TasksManager
( )
Handles the task name -> model class
and architecture -> configuration
mappings.
create_register
( backend: stroverwrite_existing: bool = False ) → Callable[[str, Tuple[str, ...]], Callable[[Type], Type]]
Parameters
backend (
str
) — The name of the backend that the register function will handle.overwrite_existing (
bool
, defaults toFalse
) — Whether or not the register function is allowed to overwrite an already existing config.
Returns
Callable[[str, Tuple[str, ...]], Callable[[Type], Type]]
A decorator taking the model type and a the supported tasks.
Creates a register function for the specified backend.
Example:
Copied
determine_framework
( model_name_or_path: typing.Union[str, pathlib.Path]subfolder: str = ''framework: typing.Optional[str] = Nonecache_dir: str = '/root/.cache/boincai/hub' ) → str
Parameters
model_name_or_path (
Union[str, Path]
) — Can be either the model id of a model repo on the BOINC AI Hub, or a path to a local directory containing a model.subfolder (
str
, defaults to""
) — In case the model files are located inside a subfolder of the model directory / repo on the BOINC AI Hub, you can specify the subfolder name here.framework (
Optional[str]
, optional) — The framework to use for the export. See above for priority if none provided.
Returns
str
The framework to use for the export.
Determines the framework to use for the export.
The priority is in the following order:
User input via
framework
.If local checkpoint is provided, use the same framework as the checkpoint.
If model repo, try to infer the framework from the cache if available, else from the Hub.
If could not infer, use available framework in environment, with priority given to PyTorch.
get_all_tasks
( ) → List
Returns
List
all the possible tasks.
Retrieves all the possible tasks.
get_exporter_config_constructor
( exporter: strmodel: typing.Union[ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel'), NoneType] = Nonetask: str = 'feature-extraction'model_type: typing.Optional[str] = Nonemodel_name: typing.Optional[str] = Noneexporter_config_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = None ) → ExportConfigConstructor
Parameters
exporter (
str
) — The exporter to use.model (
Optional[Union[PreTrainedModel, TFPreTrainedModel]]
, defaults toNone
) — The instance of the model.task (
str
, defaults to"feature-extraction"
) — The task to retrieve the config for.model_type (
Optional[str]
, defaults toNone
) — The model type to retrieve the config for.model_name (
Optional[str]
, defaults toNone
) — The name attribute of the model object, only used for the exception message.exporter_config_kwargs(`Optional[Dict[str, Any]]
, defaults to
None`) — Arguments that will be passed to the exporter config class when building the config constructor.
Returns
ExportConfigConstructor
The ExportConfig
constructor for the requested backend.
Gets the ExportConfigConstructor
for a model (or alternatively for a model type) and task combination.
get_model_class_for_task
( task: strframework: str = 'pt'model_type: typing.Optional[str] = Nonemodel_class_name: typing.Optional[str] = Nonelibrary: str = 'transformers' )
Parameters
task (
str
) — The task required.framework (
str
, defaults to"pt"
) — The framework to use for the export.model_type (
Optional[str]
, defaults toNone
) — The model type to retrieve the model class for. Some architectures need a custom class to be loaded, and can not be loaded from auto class.model_class_name (
Optional[str]
, defaults toNone
) — A model class name, allowing to override the default class that would be detected for the task. This parameter is useful for example for “automatic-speech-recognition”, that may map to AutoModelForSpeechSeq2Seq or to AutoModelForCTC.library (
str
, defaults totransformers
) — The library name of the model.
Attempts to retrieve an AutoModel class from a task name.
get_model_from_task
( task: strmodel_name_or_path: typing.Union[str, pathlib.Path]subfolder: str = ''revision: typing.Optional[str] = Noneframework: typing.Optional[str] = Nonecache_dir: typing.Optional[str] = Nonetorch_dtype: typing.Optional[ForwardRef('torch.dtype')] = Nonedevice: typing.Union[ForwardRef('torch.device'), str, NoneType] = Nonelibrary_name: str = None**model_kwargs )
Parameters
task (
str
) — The task required.model_name_or_path (
Union[str, Path]
) — Can be either the model id of a model repo on the BOINC AI Hub, or a path to a local directory containing a model.subfolder (
str
, defaults to""
) — In case the model files are located inside a subfolder of the model directory / repo on the BOINC AI Hub, you can specify the subfolder name here.revision (
Optional[str]
, optional) — Revision is the specific model version to use. It can be a branch name, a tag name, or a commit id.framework (
Optional[str]
, optional) — The framework to use for the export. SeeTasksManager.determine_framework
for the priority should none be provided.cache_dir (
Optional[str]
, optional) — Path to a directory in which a downloaded pretrained model weights have been cached if the standard cache should not be used.torch_dtype (
Optional[torch.dtype]
, defaults toNone
) — Data type to load the model on. PyTorch-only argument.device (
Optional[torch.device]
, defaults toNone
) — Device to initialize the model on. PyTorch-only argument. For PyTorch, defaults to “cpu”.model_kwargs (
Dict[str, Any]
, optional) — Keyword arguments to pass to the model.from_pretrained()
method.library_name (
Optional[str]
, optional) — The library name of the model. SeeTasksManager.infer_library_from_model
for the priority should none be provided.
Retrieves a model from its name and the task to be enabled.
get_supported_model_type_for_task
( task: strexporter: str )
Returns the list of supported architectures by the exporter for a given task.
get_supported_tasks_for_model_type
( model_type: strexporter: strmodel_name: typing.Optional[str] = None ) → TaskNameToExportConfigDict
Parameters
model_type (
str
) — The model type to retrieve the supported tasks for.exporter (
str
) — The name of the exporter.model_name (
Optional[str]
, defaults toNone
) — The name attribute of the model object, only used for the exception message.
Returns
TaskNameToExportConfigDict
The dictionary mapping each task to a corresponding ExportConfig
constructor.
Retrieves the task -> exporter backend config constructors
map from the model type.
infer_library_from_model
( model_name_or_path: strsubfolder: str = ''revision: typing.Optional[str] = Nonecache_dir: str = '/root/.cache/boincai/hub'library_name: str = None ) → str
Parameters
model_name_or_path (
str
) — The model to infer the task from. This can either be the name of a repo on the BOINC AI Hub, an instance of a model, or a model class.subfolder (
str
, defaults to""
) — In case the model files are located inside a subfolder of the model directory / repo on the BOINC AI Hub, you can specify the subfolder name here.revision (
Optional[str]
, optional, defaults toNone
) — Revision is the specific model version to use. It can be a branch name, a tag name, or a commit id.cache_dir (
Optional[str]
, optional) — Path to a directory in which a downloaded pretrained model weights have been cached if the standard cache should not be used.library_name (
Optional[str]
, optional) — The library name of the model.
Returns
str
The library name automatically detected from the model repo.
Infers the library from the model repo.
infer_task_from_model
( model: typing.Union[str, ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel'), typing.Type]subfolder: str = ''revision: typing.Optional[str] = None ) → str
Parameters
model (
str
) — The model to infer the task from. This can either be the name of a repo on the BOINC AI Hub, an instance of a model, or a model class.subfolder (
str
, optional, defaults to""
) — In case the model files are located inside a subfolder of the model directory / repo on the BOINC AI Hub, you can specify the subfolder name here.revision (
Optional[str]
, defaults toNone
) — Revision is the specific model version to use. It can be a branch name, a tag name, or a commit id.
Returns
str
The task name automatically detected from the model repo.
Infers the task from the model repo.
standardize_model_attributes
( model_name_or_path: typing.Union[str, pathlib.Path]model: typing.Union[ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel')]subfolder: str = ''revision: typing.Optional[str] = Nonecache_dir: str = '/root/.cache/boincai/hub'library_name: str = None )
Parameters
model_name_or_path (
Union[str, Path]
) — Can be either the model id of a model repo on the BOINC AI Hub, or a path to a local directory containing a model.model (
Union[PreTrainedModel, TFPreTrainedModel]
) — The instance of the model.subfolder (
str
, defaults to""
) — In case the model files are located inside a subfolder of the model directory / repo on the BOINC AI Hub, you can specify the subfolder name here.revision (
Optional[str]
, optional, defaults toNone
) — Revision is the specific model version to use. It can be a branch name, a tag name, or a commit id.cache_dir (
Optional[str]
, optional) — Path to a directory in which a downloaded pretrained model weights have been cached if the standard cache should not be used.library_name (
Optional[str]
, optional) —: The library name of the model.
Updates the model for export. This function is suitable to make required changes to the models from different libraries to follow transformers style.
Last updated