Neuron Models
Last updated
Last updated
The NeuronBaseModel
class is available for instantiating a base Neuron model without a specific head. It is used as the base class for all tasks but text generation.
( model: ScriptModule config: PretrainedConfig model_save_dir: Union = None model_file_name: Optional = None preprocessors: Optional = None neuron_config: Optional = None **kwargs )
Base class running compiled and optimized models on Neuron devices.
It implements generic methods for interacting with the BOINC AI Hub as well as compiling vanilla transformers models to neuron-optimized TorchScript module and export it using optimum.exporters.neuron
toolchain.
Class attributes:
model_type (str
, optional, defaults to "neuron_model"
) — The name of the model type to use when registering the NeuronBaseModel classes.
auto_model_class (Type
, optional, defaults to AutoModel
) — The AutoModel
class to be represented by the current NeuronBaseModel class.
Common attributes:
model (torch.jit._script.ScriptModule
) — The loaded ScriptModule
compiled for neuron devices.
config () — The configuration of the model.
model_save_dir (Path
) — The directory where a neuron compiled model is saved. By default, if the loaded model is local, the directory where the original model will be used. Otherwise, the cache directory will be used.
get_input_static_shapes
( neuron_config: NeuronConfig )
Gets a dictionary of inputs with their valid static shapes.
load_model
( path: Union )
Parameters
path (Union[str, Path]
) — Path of the compiled model.
remove_padding
( outputs: List dims: List indices: List )
Parameters
outputs (List[torch.Tensor]
) — List of torch tensors which are inference output.
dims (List[int]
) — List of dimensions in which we slice a tensor.
indices (List[int]
) — List of indices in which we slice a tensor along an axis.
Removes padding from output tensors.
The NeuronDecoderModel
class is the base class for text generation models.
( model: Module config: PretrainedConfig model_path: Union generation_config: Optional = None )
Base class to convert and run pre-trained transformers decoder models on Neuron devices.
It implements the methods to convert a pre-trained transformers decoder model into a Neuron transformer model by:
transferring the checkpoint weights of the original into an optimized neuron graph,
compiling the resulting graph using the Neuron compiler.
Common attributes:
model (torch.nn.Module
) — The decoder model with a graph optimized for neuron devices.
The following Neuron model classes are available for natural language processing tasks.
( model: ScriptModule config: PretrainedConfig model_save_dir: Union = None model_file_name: Optional = None preprocessors: Optional = None neuron_config: Optional = None **kwargs )
Parameters
Neuron Model with a BaseModelOutput for feature-extraction tasks.
This model inherits from ~neuron.modeling.NeuronBaseModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving)
Feature Extraction model on Neuron devices.
forward
( input_ids: Tensor attention_mask: Tensor token_type_ids: Optional = None **kwargs )
Parameters
attention_mask (Union[torch.Tensor, None]
of shape (batch_size, sequence_length)
, defaults to None
) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
token_type_ids (Union[torch.Tensor, None]
of shape (batch_size, sequence_length)
, defaults to None
) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
1 for tokens that are sentence A,
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example of feature extraction: (Following model is compiled with neuronx compiler and can only be run on INF2. Replace “neuronx” with “neuron” if you are using INF1.)
Copied
( model: ScriptModule config: PretrainedConfig model_save_dir: Union = None model_file_name: Optional = None preprocessors: Optional = None neuron_config: Optional = None **kwargs )
Parameters
Neuron Model with a MaskedLMOutput for masked language modeling tasks.
This model inherits from ~neuron.modeling.NeuronBaseModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving)
Masked language model for on Neuron devices.
forward
( input_ids: Tensor attention_mask: Tensor token_type_ids: Optional = None **kwargs )
Parameters
attention_mask (Union[torch.Tensor, None]
of shape (batch_size, sequence_length)
, defaults to None
) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
token_type_ids (Union[torch.Tensor, None]
of shape (batch_size, sequence_length)
, defaults to None
) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
1 for tokens that are sentence A,
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example of fill mask: (Following model is compiled with neuronx compiler and can only be run on INF2. Replace “neuronx” with “neuron” if you are using INF1.)
Copied
( model: ScriptModule config: PretrainedConfig model_save_dir: Union = None model_file_name: Optional = None preprocessors: Optional = None neuron_config: Optional = None **kwargs )
Parameters
Neuron Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
This model inherits from ~neuron.modeling.NeuronBaseModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving)
Sequence Classification model on Neuron devices.
forward
( input_ids: Tensor attention_mask: Tensor token_type_ids: Optional = None **kwargs )
Parameters
attention_mask (Union[torch.Tensor, None]
of shape (batch_size, sequence_length)
, defaults to None
) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
token_type_ids (Union[torch.Tensor, None]
of shape (batch_size, sequence_length)
, defaults to None
) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
1 for tokens that are sentence A,
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example of single-label classification: (Following model is compiled with neuronx compiler and can only be run on INF2.)
Copied
( model: ScriptModule config: PretrainedConfig model_save_dir: Union = None model_file_name: Optional = None preprocessors: Optional = None neuron_config: Optional = None **kwargs )
Parameters
Neuron Model with a QuestionAnsweringModelOutput for extractive question-answering tasks like SQuAD.
This model inherits from ~neuron.modeling.NeuronBaseModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving)
Question Answering model on Neuron devices.
forward
( input_ids: Tensor attention_mask: Tensor token_type_ids: Optional = None **kwargs )
Parameters
attention_mask (Union[torch.Tensor, None]
of shape (batch_size, sequence_length)
, defaults to None
) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
token_type_ids (Union[torch.Tensor, None]
of shape (batch_size, sequence_length)
, defaults to None
) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
1 for tokens that are sentence A,
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example of question answering: (Following model is compiled with neuronx compiler and can only be run on INF2.)
Copied
( model: ScriptModule config: PretrainedConfig model_save_dir: Union = None model_file_name: Optional = None preprocessors: Optional = None neuron_config: Optional = None **kwargs )
Parameters
Neuron Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
This model inherits from ~neuron.modeling.NeuronBaseModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving)
Token Classification model on Neuron devices.
forward
( input_ids: Tensor attention_mask: Tensor token_type_ids: Optional = None **kwargs )
Parameters
attention_mask (Union[torch.Tensor, None]
of shape (batch_size, sequence_length)
, defaults to None
) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
token_type_ids (Union[torch.Tensor, None]
of shape (batch_size, sequence_length)
, defaults to None
) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
1 for tokens that are sentence A,
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example of token classification: (Following model is compiled with neuronx compiler and can only be run on INF2.)
Copied
( model: ScriptModule config: PretrainedConfig model_save_dir: Union = None model_file_name: Optional = None preprocessors: Optional = None neuron_config: Optional = None **kwargs )
Parameters
Neuron Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.
This model inherits from ~neuron.modeling.NeuronBaseModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving)
Multiple choice model on Neuron devices.
forward
( input_ids: Tensor attention_mask: Tensor token_type_ids: Optional = None **kwargs )
Parameters
attention_mask (Union[torch.Tensor, None]
of shape (batch_size, num_choices, sequence_length)
, defaults to None
) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
token_type_ids (Union[torch.Tensor, None]
of shape (batch_size, num_choices, sequence_length)
, defaults to None
) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
1 for tokens that are sentence A,
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example of mutliple choice: (Following model is compiled with neuronx compiler and can only be run on INF2.)
Copied
( model: Module config: PretrainedConfig model_path: Union generation_config: Optional = None )
Parameters
model_path (Path
) — The directory where the compiled artifacts for the model are stored. It can be a temporary directory if the model has never been saved locally before.
Neuron model with a causal language modeling head for inference on Neuron devices.
This model inherits from ~neuron.modeling.NeuronDecoderModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving)
can_generate
( )
Returns True to validate the check made in GenerationMixin.generate()
.
forward
( input_ids: Tensor cache_ids: Tensor start_ids: Tensor = None return_dict: bool = True )
Parameters
input_ids (torch.LongTensor
) — Indices of decoder input sequence tokens in the vocabulary of shape (batch_size, sequence_length)
.
cache_ids (torch.LongTensor
) — The indices at which the cached key and value for the current inputs need to be stored.
start_ids (torch.LongTensor
) — The indices of the first tokens to be processed, deduced form the attention masks.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example of text generation:
Copied
generate
( input_ids: Tensor attention_mask: Optional = None generation_config: Optional = None **kwargs ) → torch.Tensor
Parameters
input_ids (torch.Tensor
of shape (batch_size, sequence_length)
) — The sequence used as a prompt for the generation.
attention_mask (torch.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices.
generation_config (~transformers.generation.GenerationConfig
, optional) — The generation configuration to be used as base parametrization for the generation call. **kwargs
passed to generate matching the attributes of generation_config
will override them. If generation_config
is not provided, default will be used, which had the following loading priority: 1) from the generation_config.json
model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit GenerationConfig
’s default values, whose documentation should be checked to parameterize generation.
Returns
torch.Tensor
A torch.FloatTensor
.
A streamlined generate() method overriding the transformers.GenerationMixin.generate() method.
This method uses the same logits processors/warpers and stopping criterias as the transformers library generate()
method but restricts the generation to greedy search and sampling.
It does not support transformers generate()
advanced options.
generate_tokens
( input_ids: LongTensor selector: TokenSelector batch_size: int attention_mask: Optional = None **model_kwargs ) → torch.LongTensor
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — The sequence used as a prompt for the generation.
selector (TokenSelector
) — The object implementing the generation logic based on transformers processors and stopping criterias.
batch_size (int
) — The actual input batch size. Used to avoid generating tokens for padded inputs.
attention_mask (torch.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. model_kwargs — Additional model specific kwargs will be forwarded to the forward
function of the model.
Returns
torch.LongTensor
A torch.LongTensor
containing the generated tokens.
Generate tokens using sampling or greedy search.
( text_encoder: ScriptModule unet: ScriptModule vae_decoder: Union config: Dict tokenizer: CLIPTokenizer scheduler: Union vae_encoder: Union = None text_encoder_2: Union = None tokenizer_2: Optional = None feature_extractor: Optional = None device_ids: Optional = None configs: Optional = None neuron_configs: Optional = None model_save_dir: Union = None model_and_config_save_paths: Optional = None )
load_model
( text_encoder_path: Union unet_path: Union vae_decoder_path: Union = None vae_encoder_path: Union = None text_encoder_2_path: Union = None device_ids: Optional = None dynamic_batch_size: bool = False )
Parameters
text_encoder_path (Union[str, Path]
) — Path of the compiled text encoder.
unet_path (Union[str, Path]
) — Path of the compiled U-NET.
vae_decoder_path (Optional[Union[str, Path]]
, defaults to None
) — Path of the compiled VAE decoder.
vae_encoder_path (Optional[Union[str, Path]]
, defaults to None
) — Path of the compiled VAE encoder. It is optional, only used for tasks taking images as input.
text_encoder_2_path (Optional[Union[str, Path]]
, defaults to None
) — Path of the compiled second frozen text encoder. SDXL only.
device_ids (Optional[List[int]]
, defaults to None
) — The ID of neuron cores to load a model, in the case of stable diffusion, it is only used for loading unet, and by default unet will be loaded onto both neuron cores of a device.
dynamic_batch_size (bool
, defaults to False
) — Whether enable dynamic batch size for neuron compiled model. If True
, the input batch size can be a multiple of the batch size during the compilation.
( text_encoder: ScriptModule unet: ScriptModule vae_decoder: Union config: Dict tokenizer: CLIPTokenizer scheduler: Union vae_encoder: Union = None text_encoder_2: Union = None tokenizer_2: Optional = None feature_extractor: Optional = None device_ids: Optional = None configs: Optional = None neuron_configs: Optional = None model_save_dir: Union = None model_and_config_save_paths: Optional = None )
__call__
( prompt: Union = None num_inference_steps: int = 50 guidance_scale: float = 7.5 negative_prompt: Union = None num_images_per_prompt: int = 1 eta: float = 0.0 generator: Union = None latents: Optional = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None output_type: Optional = 'pil' return_dict: bool = True callback: Optional = None callback_steps: int = 1 cross_attention_kwargs: Optional = None guidance_rescale: float = 0.0 ) → diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput
or tuple
Parameters
prompt (Optional[Union[str, List[str]]]
, defaults to None
) — The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds
.
num_inference_steps (int
, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
guidance_scale (float
, defaults to 7.5) — A higher guidance scale value encourages the model to generate images closely linked to the text prompt
at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1
.
negative_prompt (Optional[Union[str, List[str]]]
, defaults to None
) — The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds
instead. Ignored when not using guidance (guidance_scale < 1
).
num_images_per_prompt (int
, defaults to 1) — The number of images to generate per prompt. If it is different from the batch size used for the compiltaion, it will be overriden by the static batch size of neuron (except for dynamic batching).
latents (Optional[torch.FloatTensor]
, defaults to None
) — Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator
.
prompt_embeds (Optional[torch.FloatTensor]
, defaults to None
) — Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt
input argument.
negative_prompt_embeds (Optional[torch.FloatTensor]
, defaults to None
) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds
are generated from the negative_prompt
input argument.
output_type (Optional[str]
, defaults to "pil"
) — The output format of the generated image. Choose between PIL.Image
or np.array
.
return_dict (bool
, defaults to True
) — Whether or not to return a diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput
instead of a plain tuple.
callback (Optional[Callable]
, defaults to None
) — A function that calls every callback_steps
steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor)
.
callback_steps (int
, defaults to 1) — The frequency at which the callback
function is called. If not specified, the callback is called at every step.
Returns
diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput
or tuple
If return_dict
is True
, diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput
is returned, otherwise a tuple
is returned where the first element is a list with the generated images and the second element is a list of bool
s indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content.
The call function to the pipeline for generation.
Examples:
Copied
( text_encoder: ScriptModule unet: ScriptModule vae_decoder: Union config: Dict tokenizer: CLIPTokenizer scheduler: Union vae_encoder: Union = None text_encoder_2: Union = None tokenizer_2: Optional = None feature_extractor: Optional = None device_ids: Optional = None configs: Optional = None neuron_configs: Optional = None model_save_dir: Union = None model_and_config_save_paths: Optional = None )
__call__
( prompt: Union = None image: Optional = None strength: float = 0.8 num_inference_steps: int = 50 guidance_scale: float = 7.5 negative_prompt: Union = None num_images_per_prompt: int = 1 eta: float = 0.0 generator: Optional = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None output_type: str = 'pil' return_dict: bool = True callback: Optional = None callback_steps: int = 1 cross_attention_kwargs: Optional = None ) → diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput
or tuple
Parameters
prompt (Optional[Union[str, List[str]]]
, defaults to None
) — The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds
.
image (Optional["PipelineImageInput"]
, defaults to None
) — Image
, numpy array or tensor representing an image batch to be used as the starting point. For both numpy array and pytorch tensor, the expected value range is between [0, 1]
If it’s a tensor or a list or tensors, the expected shape should be (B, C, H, W)
or (C, H, W)
. If it is a numpy array or a list of arrays, the expected shape should be (B, H, W, C)
or (H, W, C)
It can also accept image latents as image
, but if passing latents directly it is not encoded again.
strength (float
, defaults to 0.8) — Indicates extent to transform the reference image
. Must be between 0 and 1. image
is used as a starting point and more noise is added the higher the strength
. The number of denoising steps depends on the amount of noise initially added. When strength
is 1, added noise is maximum and the denoising process runs for the full number of iterations specified in num_inference_steps
. A value of 1 essentially ignores image
.
num_inference_steps (int
, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter is modulated by strength
.
guidance_scale (float
, defaults to 7.5) — A higher guidance scale value encourages the model to generate images closely linked to the text prompt
at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1
.
negative_prompt (Optional[Union[str, List[str]
, defaults to None
) — The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds
instead. Ignored when not using guidance (guidance_scale < 1
).
num_images_per_prompt (int
, defaults to 1) — The number of images to generate per prompt. If it is different from the batch size used for the compiltaion, it will be overriden by the static batch size of neuron (except for dynamic batching).
prompt_embeds (Optional[torch.FloatTensor]
, defaults to None
) — Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt
input argument.
negative_prompt_embeds (Optional[torch.FloatTensor]
, defaults to None
) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds
are generated from the negative_prompt
input argument.
output_type (Optional[str]
, defaults to "pil"
) — The output format of the generated image. Choose between PIL.Image
or np.array
.
return_dict (bool
, defaults to True
) — Whether or not to return a diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput
instead of a plain tuple.
callback (Optional[Callable]
, defaults to None
) — A function that calls every callback_steps
steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor)
.
callback_steps (int
, defaults to 1) — The frequency at which the callback
function is called. If not specified, the callback is called at every step.
Returns
diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput
or tuple
If return_dict
is True
, diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput
is returned, otherwise a tuple
is returned where the first element is a list with the generated images and the second element is a list of bool
s indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content.
The call function to the pipeline for generation.
Examples:
Copied
( text_encoder: ScriptModule unet: ScriptModule vae_decoder: Union config: Dict tokenizer: CLIPTokenizer scheduler: Union vae_encoder: Union = None text_encoder_2: Union = None tokenizer_2: Optional = None feature_extractor: Optional = None device_ids: Optional = None configs: Optional = None neuron_configs: Optional = None model_save_dir: Union = None model_and_config_save_paths: Optional = None )
__call__
( prompt: Union = None image: Optional = None mask_image: Optional = None masked_image_latents: Optional = None strength: float = 1.0 num_inference_steps: int = 50 guidance_scale: float = 7.5 negative_prompt: Union = None num_images_per_prompt: Optional = 1 eta: float = 0.0 generator: Union = None latents: Optional = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None output_type: Optional = 'pil' return_dict: bool = True callback: Optional = None callback_steps: int = 1 cross_attention_kwargs: Optional = None clip_skip: int = None ) → diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput
or tuple
Parameters
prompt (Optional[Union[str, List[str]]]
, defaults to None
) — The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds
.
image (Optional["PipelineImageInput"]
, defaults to None
) — Image
, numpy array or tensor representing an image batch to be inpainted (which parts of the image to be masked out with mask_image
and repainted according to prompt
). For both numpy array and pytorch tensor, the expected value range is between [0, 1]
If it’s a tensor or a list or tensors, the expected shape should be (B, C, H, W)
or (C, H, W)
. If it is a numpy array or a list of arrays, the expected shape should be (B, H, W, C)
or (H, W, C)
It can also accept image latents as image
, but if passing latents directly it is not encoded again.
mask_image (Optional["PipelineImageInput"]
, defaults to None
) — Image
, numpy array or tensor representing an image batch to mask image
. White pixels in the mask are repainted while black pixels are preserved. If mask_image
is a PIL image, it is converted to a single channel (luminance) before use. If it’s a numpy array or pytorch tensor, it should contain one color channel (L) instead of 3, so the expected shape for pytorch tensor would be (B, 1, H, W)
, (B, H, W)
, (1, H, W)
, (H, W)
. And for numpy array would be for (B, H, W, 1)
, (B, H, W)
, (H, W, 1)
, or (H, W)
.
strength (float
, defaults to 1.0) — Indicates extent to transform the reference image
. Must be between 0 and 1. image
is used as a starting point and more noise is added the higher the strength
. The number of denoising steps depends on the amount of noise initially added. When strength
is 1, added noise is maximum and the denoising process runs for the full number of iterations specified in num_inference_steps
. A value of 1 essentially ignores image
.
num_inference_steps (int
, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter is modulated by strength
.
guidance_scale (float
, defaults to 7.5) — A higher guidance scale value encourages the model to generate images closely linked to the text prompt
at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1
.
negative_prompt (Optional[Union[str, List[str]
, defaults to None
) — The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds
instead. Ignored when not using guidance (guidance_scale < 1
).
num_images_per_prompt (int
, defaults to 1) — The number of images to generate per prompt. If it is different from the batch size used for the compiltaion, it will be overriden by the static batch size of neuron (except for dynamic batching).
latents (Optional[torch.FloatTensor]
, defaults to None
) — Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator
.
prompt_embeds (Optional[torch.FloatTensor]
, defaults to None
) — Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt
input argument.
negative_prompt_embeds (Optional[torch.FloatTensor]
, defaults to None
) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds
are generated from the negative_prompt
input argument.
output_type (Optional[str]
, defaults to "pil"
) — The output format of the generated image. Choose between PIL.Image
or np.array
.
return_dict (bool
, defaults to True
) — Whether or not to return a diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput
instead of a plain tuple.
callback (Optional[Callable]
, defaults to None
) — A function that calls every callback_steps
steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor)
.
callback_steps (int
, defaults to 1) — The frequency at which the callback
function is called. If not specified, the callback is called at every step.
clip_skip (int
, defaults to None
) — Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.
Returns
diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput
or tuple
If return_dict
is True
, diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput
is returned, otherwise a tuple
is returned where the first element is a list with the generated images and the second element is a list of bool
s indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content.
The call function to the pipeline for generation.
Examples:
Copied
( text_encoder: ScriptModule unet: ScriptModule vae_decoder: ScriptModule config: Dict tokenizer: CLIPTokenizer scheduler: Union vae_encoder: Optional = None text_encoder_2: Optional = None tokenizer_2: Optional = None feature_extractor: Optional = None device_ids: Optional = None configs: Optional = None neuron_configs: Optional = None model_save_dir: Union = None model_and_config_save_paths: Optional = None add_watermarker: Optional = None )
__call__
( prompt: Union = None prompt_2: Union = None num_inference_steps: int = 50 denoising_end: Optional = None guidance_scale: float = 5.0 negative_prompt: Union = None negative_prompt_2: Union = None num_images_per_prompt: int = 1 eta: float = 0.0 generator: Union = None latents: Optional = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None pooled_prompt_embeds: Optional = None negative_pooled_prompt_embeds: Optional = None output_type: Optional = 'pil' return_dict: bool = True callback: Optional = None callback_steps: int = 1 cross_attention_kwargs: Optional = None guidance_rescale: float = 0.0 original_size: Optional = None crops_coords_top_left: Tuple = (0, 0) target_size: Optional = None negative_original_size: Optional = None negative_crops_coords_top_left: Tuple = (0, 0) negative_target_size: Optional = None clip_skip: Optional = None ) → diffusers.pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput
or tuple
Parameters
prompt (Optional[Union[str, List[str]]]
, defaults to None
) — The prompt or prompts to guide the image generation. If not defined, one has to pass prompt_embeds
. instead.
prompt_2 (Optional[Union[str, List[str]]]
, defaults to None
) — The prompt or prompts to be sent to the tokenizer_2
and text_encoder_2
. If not defined, prompt
is used in both text-encoders
num_inference_steps (int
, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
negative_prompt (Optional[Union[str, List[str]]]
, defaults to None
) — The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored if guidance_scale
is less than 1
).
negative_prompt_2 (Optional[Union[str, List[str]]]
, defaults to None
) — The prompt or prompts not to guide the image generation to be sent to tokenizer_2
and text_encoder_2
. If not defined, negative_prompt
is used in both text-encoders
num_images_per_prompt (int
, defaults to 1) — The number of images to generate per prompt. If it is different from the batch size used for the compiltaion, it will be overriden by the static batch size of neuron (except for dynamic batching).
latents (Optional[torch.FloatTensor]
, defaults to None
) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator
.
prompt_embeds (Optional[torch.FloatTensor]
, defaults to None
) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt
input argument.
negative_prompt_embeds (Optional[torch.FloatTensor]
, defaults to None
) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt
input argument.
pooled_prompt_embeds (Optional[torch.FloatTensor]
, defaults to None
) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated from prompt
input argument.
negative_pooled_prompt_embeds (Optional[torch.FloatTensor]
, defaults to None
) — Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from negative_prompt
input argument.
return_dict (bool
, defaults to True
) — Whether or not to return a diffusers.pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput
instead of a plain tuple.
callback (Optional[Callable]
, defaults to None
) — A function that will be called every callback_steps
steps during inference. The function will be called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor)
.
callback_steps (int
, defaults to 1) — The frequency at which the callback
function will be called. If not specified, the callback will be called at every step.
clip_skip (Optional[int]
, defaults to None
) — Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.
Returns
diffusers.pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput
or tuple
diffusers.pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput
if return_dict
is True, otherwise a tuple
. When returning a tuple, the first element is a list with the generated images.
Function invoked when calling the pipeline for generation.
Examples:
Copied
( text_encoder: ScriptModule unet: ScriptModule vae_decoder: ScriptModule config: Dict tokenizer: CLIPTokenizer scheduler: Union vae_encoder: Optional = None text_encoder_2: Optional = None tokenizer_2: Optional = None feature_extractor: Optional = None device_ids: Optional = None configs: Optional = None neuron_configs: Optional = None model_save_dir: Union = None model_and_config_save_paths: Optional = None add_watermarker: Optional = None )
__call__
( prompt: Union = None prompt_2: Union = None image: Optional = None strength: float = 0.3 num_inference_steps: int = 50 denoising_start: Optional = None denoising_end: Optional = None guidance_scale: float = 5.0 negative_prompt: Union = None negative_prompt_2: Union = None num_images_per_prompt: Optional = 1 eta: float = 0.0 generator: Union = None latents: Optional = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None pooled_prompt_embeds: Optional = None negative_pooled_prompt_embeds: Optional = None output_type: Optional = 'pil' return_dict: bool = True callback: Optional = None callback_steps: int = 1 cross_attention_kwargs: Optional = None guidance_rescale: float = 0.0 original_size: Tuple = None crops_coords_top_left: Tuple = (0, 0) target_size: Tuple = None negative_original_size: Optional = None negative_crops_coords_top_left: Tuple = (0, 0) negative_target_size: Optional = None aesthetic_score: float = 6.0 negative_aesthetic_score: float = 2.5 clip_skip: Optional = None ) → diffusers.pipelines.stable_diffusion.StableDiffusionXLPipelineOutput
or tuple
Parameters
prompt (Optional[Union[str, List[str]]]
, defaults to None
) — The prompt or prompts to guide the image generation. If not defined, one has to pass prompt_embeds
. instead.
prompt_2 (Optional[Union[str, List[str]]]
, defaults to None
) — The prompt or prompts to be sent to the tokenizer_2
and text_encoder_2
. If not defined, prompt
is used in both text-encoders
image (Optional["PipelineImageInput"]
, defaults to None
) — The image(s) to modify with the pipeline.
strength (float
, defaults to 0.3) — Conceptually, indicates how much to transform the reference image
. Must be between 0 and 1. image
will be used as a starting point, adding more noise to it the larger the strength
. The number of denoising steps depends on the amount of noise initially added. When strength
is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in num_inference_steps
. A value of 1, therefore, essentially ignores image
. Note that in the case of denoising_start
being declared as an integer, the value of strength
will be ignored.
num_inference_steps (int
, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
negative_prompt (Optional[Union[str, List[str]]]
, defaults to None
) — The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored if guidance_scale
is less than 1
).
negative_prompt_2 (Optional[Union[str, List[str]]]
, defaults to None
) — The prompt or prompts not to guide the image generation to be sent to tokenizer_2
and text_encoder_2
. If not defined, negative_prompt
is used in both text-encoders
num_images_per_prompt (int
, defaults to 1) — The number of images to generate per prompt. If it is different from the batch size used for the compiltaion, it will be overriden by the static batch size of neuron (except for dynamic batching).
latents (Optional[torch.FloatTensor]
, defaults to None
) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator
.
prompt_embeds (Optional[torch.FloatTensor]
, defaults to None
) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt
input argument.
negative_prompt_embeds (Optional[torch.FloatTensor]
, defaults to None
) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt
input argument.
pooled_prompt_embeds (Optional[torch.FloatTensor]
, defaults to None
) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated from prompt
input argument.
negative_pooled_prompt_embeds (Optional[torch.FloatTensor]
, defaults to None
) — Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from negative_prompt
input argument.
return_dict (bool
, defaults to True
) — Whether or not to return a diffusers.pipelines.stable_diffusion.StableDiffusionXLPipelineOutput
instead of a plain tuple.
callback (Optional[Callable]
, defaults to None
) — A function that will be called every callback_steps
steps during inference. The function will be called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor)
.
callback_stcallback_steps (int
, defaults to 1) — The frequency at which the callback
function will be called. If not specified, the callback will be called at every step.
clip_skip (Optional[int]
, defaults to None
) — Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.
Returns
diffusers.pipelines.stable_diffusion.StableDiffusionXLPipelineOutput
or tuple
diffusers.pipelines.stable_diffusion.StableDiffusionXLPipelineOutput
if return_dict
is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
Function invoked when calling the pipeline for generation.
Examples:
Copied
( text_encoder: ScriptModule unet: ScriptModule vae_decoder: ScriptModule config: Dict tokenizer: CLIPTokenizer scheduler: Union vae_encoder: Optional = None text_encoder_2: Optional = None tokenizer_2: Optional = None feature_extractor: Optional = None device_ids: Optional = None configs: Optional = None neuron_configs: Optional = None model_save_dir: Union = None model_and_config_save_paths: Optional = None add_watermarker: Optional = None )
__call__
( prompt: Union = None prompt_2: Union = None image: Optional = None mask_image: Optional = None masked_image_latents: Optional = None strength: float = 0.9999 num_inference_steps: int = 50 denoising_start: Optional = None denoising_end: Optional = None guidance_scale: float = 7.5 negative_prompt: Union = None negative_prompt_2: Union = None num_images_per_prompt: Optional = 1 eta: float = 0.0 generator: Union = None latents: Optional = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None pooled_prompt_embeds: Optional = None negative_pooled_prompt_embeds: Optional = None output_type: Optional = 'pil' return_dict: bool = True callback: Optional = None callback_steps: int = 1 cross_attention_kwargs: Optional = None guidance_rescale: float = 0.0 original_size: Tuple = None crops_coords_top_left: Tuple = (0, 0) target_size: Tuple = None negative_original_size: Optional = None negative_crops_coords_top_left: Tuple = (0, 0) negative_target_size: Optional = None aesthetic_score: float = 6.0 negative_aesthetic_score: float = 2.5 clip_skip: Optional = None ) → diffusers.pipelines.stable_diffusion.StableDiffusionXLPipelineOutput
or tuple
Parameters
prompt (Optional[Union[str, List[str]]]
, defaults to None
) — The prompt or prompts to guide the image generation. If not defined, one has to pass prompt_embeds
. instead.
prompt_2 (Optional[Union[str, List[str]]]
, defaults to None
) — The prompt or prompts to be sent to the tokenizer_2
and text_encoder_2
. If not defined, prompt
is used in both text-encoders
image (Optional["PipelineImageInput"]
, defaults to None
) — Image
, or tensor representing an image batch which will be inpainted, i.e. parts of the image will be masked out with mask_image
and repainted according to prompt
.
mask_image (Optional["PipelineImageInput"]
, defaults to None
) — Image
, or tensor representing an image batch, to mask image
. White pixels in the mask will be repainted, while black pixels will be preserved. If mask_image
is a PIL image, it will be converted to a single channel (luminance) before use. If it’s a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be (B, H, W, 1)
.
strength (float
, defaults to 0.9999) — Conceptually, indicates how much to transform the masked portion of the reference image
. Must be between 0 and 1. image
will be used as a starting point, adding more noise to it the larger the strength
. The number of denoising steps depends on the amount of noise initially added. When strength
is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in num_inference_steps
. A value of 1, therefore, essentially ignores the masked portion of the reference image
. Note that in the case of denoising_start
being declared as an integer, the value of strength
will be ignored.
num_inference_steps (int
, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
negative_prompt (Optional[Union[str, List[str]]]
, defaults to None
) — The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored if guidance_scale
is less than 1
).
negative_prompt_2 (Optional[Union[str, List[str]]]
, defaults to None
) — The prompt or prompts not to guide the image generation to be sent to tokenizer_2
and text_encoder_2
. If not defined, negative_prompt
is used in both text-encoders
prompt_embeds (Optional[torch.FloatTensor]
, defaults to None
) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt
input argument.
negative_prompt_embeds (Optional[torch.FloatTensor]
, defaults to None
) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt
input argument.
pooled_prompt_embeds (Optional[torch.FloatTensor]
, defaults to None
) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated from prompt
input argument.
negative_pooled_prompt_embeds (Optional[torch.FloatTensor]
, defaults to None
) — Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from negative_prompt
input argument.
num_images_per_prompt (int
, defaults to 1) — The number of images to generate per prompt.
latents (Optional[torch.FloatTensor]
, defaults to None
) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator
.
return_dict (bool
, defaults to True
) — Whether or not to return a ~pipelines.stable_diffusion.StableDiffusionPipelineOutput
instead of a plain tuple.
callback (Optional[Callable]
, defaults to None
) — A function that will be called every callback_steps
steps during inference. The function will be called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor)
.
callback_steps (int
, defaults to 1) — The frequency at which the callback
function will be called. If not specified, the callback will be called at every step.
clip_skip (Optional[int]
, defaults to None
) — Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.
Returns
diffusers.pipelines.stable_diffusion.StableDiffusionXLPipelineOutput
or tuple
diffusers.pipelines.stable_diffusion.StableDiffusionXLPipelineOutput
if return_dict
is True, otherwise a tuple.
tuple. When returning a tuple, the first element is a list with the generated images.
Function invoked when calling the pipeline for generation.
Examples:
Copied
Loads a TorchScript module compiled by neuron(x)-cc compiler. It will be first loaded onto CPU and then moved to one or multiple .
config () — The configuration of the original model.
generation_config () — The generation configuration used by default when calling generate()
.
config (transformers.PretrainedConfig
) — is the Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the optimum.neuron.modeling.NeuronBaseModel.from_pretrained
method to load the model weights.
model (torch.jit._script.ScriptModule
) — is the TorchScript graph compiled by neuron(x) compiler.
input_ids (torch.Tensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Indices can be obtained using . See and for details.
0 for tokens that are masked.
0 for tokens that are sentence B.
The forward method, overrides the __call__
special method.
config (transformers.PretrainedConfig
) — is the Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the optimum.neuron.modeling.NeuronBaseModel.from_pretrained
method to load the model weights.
model (torch.jit._script.ScriptModule
) — is the TorchScript graph compiled by neuron(x) compiler.
input_ids (torch.Tensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Indices can be obtained using . See and for details.
0 for tokens that are masked.
0 for tokens that are sentence B.
The forward method, overrides the __call__
special method.
config (transformers.PretrainedConfig
) — is the Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the optimum.neuron.modeling.NeuronBaseModel.from_pretrained
method to load the model weights.
model (torch.jit._script.ScriptModule
) — is the TorchScript graph compiled by neuron(x) compiler.
input_ids (torch.Tensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Indices can be obtained using . See and for details.
0 for tokens that are masked.
0 for tokens that are sentence B.
The forward method, overrides the __call__
special method.
config (transformers.PretrainedConfig
) — is the Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the optimum.neuron.modeling.NeuronBaseModel.from_pretrained
method to load the model weights.
model (torch.jit._script.ScriptModule
) — is the TorchScript graph compiled by neuron(x) compiler.
input_ids (torch.Tensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Indices can be obtained using . See and for details.
0 for tokens that are masked.
0 for tokens that are sentence B.
The forward method, overrides the __call__
special method.
config (transformers.PretrainedConfig
) — is the Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the optimum.neuron.modeling.NeuronBaseModel.from_pretrained
method to load the model weights.
model (torch.jit._script.ScriptModule
) — is the TorchScript graph compiled by neuron(x) compiler.
input_ids (torch.Tensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Indices can be obtained using . See and for details.
0 for tokens that are masked.
0 for tokens that are sentence B.
The forward method, overrides the __call__
special method.
config (transformers.PretrainedConfig
) — is the Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the optimum.neuron.modeling.NeuronBaseModel.from_pretrained
method to load the model weights.
model (torch.jit._script.ScriptModule
) — is the TorchScript graph compiled by neuron(x) compiler.
input_ids (torch.Tensor
of shape (batch_size, num_choices, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Indices can be obtained using . See and for details.
0 for tokens that are masked.
0 for tokens that are sentence B.
The forward method, overrides the __call__
special method.
model (torch.nn.Module
) — is the neuron decoder graph.
config (transformers.PretrainedConfig
) — is the Model configuration class with all the parameters of the model.
generation_config (transformers.GenerationConfig
) — holds the configuration for the model generation task.
The forward method, overrides the __call__
special method.
Please refer to for details on generation configuration.
Loads Stable Diffusion TorchScript modules compiled by neuron(x)-cc compiler. It will be first loaded onto CPU and then moved to one or multiple .
eta (float
, defaults to 0.0) — Corresponds to parameter eta (η) from the paper. Only applies to the diffusers.schedulers.DDIMScheduler
, and is ignored in other schedulers.
generator (Optional[Union[torch.Generator, List[torch.Generator]]]
, defaults to None
) — A to make generation deterministic.
cross_attention_kwargs (dict
, defaults to None
) — A kwargs dictionary that if specified is passed along to the AttentionProcessor
as defined in .
guidance_rescale (float
, defaults to 0.0) — Guidance rescale factor from . Guidance rescale factor should fix overexposure when using zero terminal SNR.
eta (float
, defaults to 0.0) — Corresponds to parameter eta (η) from the paper. Only applies to the diffusers.schedulers.DDIMScheduler
, and is ignored in other schedulers.
generator (Optional[Union[torch.Generator, List[torch.Generator]]]
, defaults to None
) — A to make generation deterministic.
cross_attention_kwargs (dict
, defaults to None
) — A kwargs dictionary that if specified is passed along to the AttentionProcessor
as defined in .
eta (float
, defaults to 0.0) — Corresponds to parameter eta (η) from the paper. Only applies to the diffusers.schedulers.DDIMScheduler
, and is ignored in other schedulers.
generator (Optional[Union[torch.Generator, List[torch.Generator]]]
, defaults to None
) — A to make generation deterministic.
cross_attention_kwargs (dict
, defaults to None
) — A kwargs dictionary that if specified is passed along to the AttentionProcessor
as defined in .
denoising_end (Optional[float]
, defaults to None
) — When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be completed before it is intentionally prematurely terminated. As a result, the returned sample will still retain a substantial amount of noise as determined by the discrete timesteps selected by the scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a “Mixture of Denoisers” multi-pipeline setup, as elaborated in
guidance_scale (float
, defaults to 5.0) — Guidance scale as defined in . guidance_scale
is defined as w
of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the text prompt
, usually at the expense of lower image quality.
eta (float
, defaults to 0.0) — Corresponds to parameter eta (η) in the DDIM paper: . Only applies to schedulers.DDIMScheduler
, will be ignored for others.
generator (Optional[Union[torch.Generator, List[torch.Generator]]]
, defaults to None
) — One or a list of to make generation deterministic.
output_type (Optional[str]
, defaults to "pil"
) — The output format of the generate image. Choose between : PIL.Image.Image
or np.array
.
cross_attention_kwargs (dict
, defaults to None
) — A kwargs dictionary that if specified is passed along to the AttentionProcessor
as defined under self.processor
in .
guidance_rescale (float
, optional, defaults to 0.0) — Guidance rescale factor proposed by guidance_scale
is defined as φ
in equation 16. of . Guidance rescale factor should fix overexposure when using zero terminal SNR.
original_size (Optional[Tuple[int, int]]
, defaults to (1024, 1024)) — If original_size
is not the same as target_size
the image will appear to be down- or upsampled. original_size
defaults to (width, height)
if not specified. Part of SDXL’s micro-conditioning as explained in section 2.2 of .
crops_coords_top_left (Tuple[int]
, defaults to (0, 0)) — crops_coords_top_left
can be used to generate an image that appears to be “cropped” from the position crops_coords_top_left
downwards. Favorable, well-centered images are usually achieved by setting crops_coords_top_left
to (0, 0). Part of SDXL’s micro-conditioning as explained in section 2.2 of .
target_size (Tuple[int]
,defaults to (1024, 1024)) — For most cases, target_size
should be set to the desired height and width of the generated image. If not specified it will default to (width, height)
. Part of SDXL’s micro-conditioning as explained in section 2.2 of .
negative_original_size (Tuple[int]
, defaults to (1024, 1024)) — To negatively condition the generation process based on a specific image resolution. Part of SDXL’s micro-conditioning as explained in section 2.2 of . For more information, refer to this issue thread: .
negative_crops_coords_top_left (Tuple[int]
, defaults to (0, 0)) — To negatively condition the generation process based on a specific crop coordinates. Part of SDXL’s micro-conditioning as explained in section 2.2 of . For more information, refer to this issue thread: .
negative_target_size (Tuple[int]
, defaults to (1024, 1024)) — To negatively condition the generation process based on a target image resolution. It should be as same as the target_size
for most cases. Part of SDXL’s micro-conditioning as explained in section 2.2 of . For more information, refer to this issue thread: .
denoising_start (Optional[float]
, defaults to None
) — When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and it is assumed that the passed image
is a partly denoised image. Note that when this is specified, strength will be ignored. The denoising_start
parameter is particularly beneficial when this pipeline is integrated into a “Mixture of Denoisers” multi-pipeline setup, as detailed in .
denoising_end (Optional[float]
, defaults to None
) — When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be completed before it is intentionally prematurely terminated. As a result, the returned sample will still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be denoised by a successor pipeline that has denoising_start
set to 0.8 so that it only denoises the final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a “Mixture of Denoisers” multi-pipeline setup, as elaborated in .
guidance_scale (float
, defaults to 7.5) — Guidance scale as defined in . guidance_scale
is defined as w
of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the text prompt
, usually at the expense of lower image quality.
eta (float
, defaults to 0.0) — Corresponds to parameter eta (η) in the DDIM paper: . Only applies to schedulers.DDIMScheduler
, will be ignored for others.
generator (Optional[Union[torch.Generator, List[torch.Generator]]]
, defaults to None
) — One or a list of to make generation deterministic.
output_type (Optional[str]
, defaults to "pil"
) — The output format of the generate image. Choose between : PIL.Image.Image
or np.array
.
cross_attention_kwargs (Optional[Dict[str, Any]]
, defaults to None
) — A kwargs dictionary that if specified is passed along to the AttentionProcessor
as defined under self.processor
in .
guidance_rescale (float
, defaults to 0.0) — Guidance rescale factor proposed by guidance_scale
is defined as φ
in equation 16. of . Guidance rescale factor should fix overexposure when using zero terminal SNR.
original_size (Optional[Tuple[int, int]]
, defaults to (1024, 1024)) — If original_size
is not the same as target_size
the image will appear to be down- or upsampled. original_size
defaults to (width, height)
if not specified. Part of SDXL’s micro-conditioning as explained in section 2.2 of .
crops_coords_top_left (Tuple[int]
, defaults to (0, 0)) — crops_coords_top_left
can be used to generate an image that appears to be “cropped” from the position crops_coords_top_left
downwards. Favorable, well-centered images are usually achieved by setting crops_coords_top_left
to (0, 0). Part of SDXL’s micro-conditioning as explained in section 2.2 of .
target_size (Tuple[int]
,defaults to (1024, 1024)) — For most cases, target_size
should be set to the desired height and width of the generated image. If not specified it will default to (width, height)
. Part of SDXL’s micro-conditioning as explained in section 2.2 of .
negative_original_size (Tuple[int]
, defaults to (1024, 1024)) — To negatively condition the generation process based on a specific image resolution. Part of SDXL’s micro-conditioning as explained in section 2.2 of . For more information, refer to this issue thread: .
negative_crops_coords_top_left (Tuple[int]
, defaults to (0, 0)) — To negatively condition the generation process based on a specific crop coordinates. Part of SDXL’s micro-conditioning as explained in section 2.2 of . For more information, refer to this issue thread: .
negative_target_size (Tuple[int]
, defaults to (1024, 1024)) — To negatively condition the generation process based on a target image resolution. It should be as same as the target_size
for most cases. Part of SDXL’s micro-conditioning as explained in section 2.2 of . For more information, refer to this issue thread: .
aesthetic_score (float
, defaults to 6.0) — Used to simulate an aesthetic score of the generated image by influencing the positive text condition. Part of SDXL’s micro-conditioning as explained in section 2.2 of .
negative_aesthetic_score (float
, defaults to 2.5) — Part of SDXL’s micro-conditioning as explained in section 2.2 of . Can be used to simulate an aesthetic score of the generated image by influencing the negative text condition.
denoising_start (Optional[float]
, defaults to None
) — When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and it is assumed that the passed image
is a partly denoised image. Note that when this is specified, strength will be ignored. The denoising_start
parameter is particularly beneficial when this pipeline is integrated into a “Mixture of Denoisers” multi-pipeline setup, as detailed in .
denoising_end (Optional[float]
, defaults to None
) — When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be completed before it is intentionally prematurely terminated. As a result, the returned sample will still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be denoised by a successor pipeline that has denoising_start
set to 0.8 so that it only denoises the final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a “Mixture of Denoisers” multi-pipeline setup, as elaborated in .
guidance_scale (float
, defaults to 7.5) — Guidance scale as defined in . guidance_scale
is defined as w
of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the text prompt
, usually at the expense of lower image quality.
eta (float
, defaults to 0.0) — Corresponds to parameter eta (η) in the DDIM paper: . Only applies to schedulers.DDIMScheduler
, will be ignored for others.
generator (Optional[Union[torch.Generator, List[torch.Generator]]]
, defaults to None
) — One or a list of to make generation deterministic.
output_type (Optional[str]
, defaults to "pil"
) — The output format of the generate image. Choose between : PIL.Image.Image
or np.array
.
cross_attention_kwargs (Optional[Dict[str, Any]]
, defaults to None
) — A kwargs dictionary that if specified is passed along to the AttentionProcessor
as defined under self.processor
in .
original_size (Tuple[int]
, defaults to (1024, 1024)) — If original_size
is not the same as target_size
the image will appear to be down- or upsampled. original_size
defaults to (height, width)
if not specified. Part of SDXL’s micro-conditioning as explained in section 2.2 of .
crops_coords_top_left (Tuple[int]
, defaults to (0, 0)) — crops_coords_top_left
can be used to generate an image that appears to be “cropped” from the position crops_coords_top_left
downwards. Favorable, well-centered images are usually achieved by setting crops_coords_top_left
to (0, 0). Part of SDXL’s micro-conditioning as explained in section 2.2 of .
target_size (Tuple[int]
, defaults to (1024, 1024)) — For most cases, target_size
should be set to the desired height and width of the generated image. If not specified it will default to (height, width)
. Part of SDXL’s micro-conditioning as explained in section 2.2 of .
negative_original_size (Tuple[int]
, defaults to (1024, 1024)) — To negatively condition the generation process based on a specific image resolution. Part of SDXL’s micro-conditioning as explained in section 2.2 of . For more information, refer to this issue thread: .
negative_crops_coords_top_left (Tuple[int]
, defaults to (0, 0)) — To negatively condition the generation process based on a specific crop coordinates. Part of SDXL’s micro-conditioning as explained in section 2.2 of . For more information, refer to this issue thread: .
negative_target_size (Tuple[int]
, defaults to (1024, 1024)) — To negatively condition the generation process based on a target image resolution. It should be as same as the target_size
for most cases. Part of SDXL’s micro-conditioning as explained in section 2.2 of . For more information, refer to this issue thread: .
aesthetic_score (float
, defaults to 6.0) — Used to simulate an aesthetic score of the generated image by influencing the positive text condition. Part of SDXL’s micro-conditioning as explained in section 2.2 of .
negative_aesthetic_score (float
, defaults to 2.5) — Part of SDXL’s micro-conditioning as explained in section 2.2 of . Can be used to simulate an aesthetic score of the generated image by influencing the negative text condition.