Load a dataset from the Hub
Load a dataset from the Hub
Finding high-quality datasets that are reproducible and accessible can be difficult. One of 🌍 Datasets main goals is to provide a simple way to load a dataset of any format or type. The easiest way to get started is to discover an existing dataset on the BOINC AI Hub - a community-driven collection of datasets for tasks in NLP, computer vision, and audio - and use 🌍 Datasets to download and generate the dataset.
This tutorial uses the rotten_tomatoes and MInDS-14 datasets, but feel free to load any dataset you want and follow along. Head over to the Hub now and find a dataset for your task!
Load a dataset
Before you take the time to download a dataset, it’s often helpful to quickly get some general information about a dataset. A dataset’s information is stored inside DatasetInfo and can include information such as the dataset description, features, and dataset size.
Use the load_dataset_builder() function to load a dataset builder and inspect a dataset’s attributes without committing to downloading it:
Copied
>>> from datasets import load_dataset_builder
>>> ds_builder = load_dataset_builder("rotten_tomatoes")
# Inspect dataset description
>>> ds_builder.info.description
Movie Review Dataset. This is a dataset of containing 5,331 positive and 5,331 negative processed sentences from Rotten Tomatoes movie reviews. This data was first used in Bo Pang and Lillian Lee, ``Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales.'', Proceedings of the ACL, 2005.
# Inspect dataset features
>>> ds_builder.info.features
{'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None),
'text': Value(dtype='string', id=None)}If you’re happy with the dataset, then load it with load_dataset():
Copied
Splits
A split is a specific subset of a dataset like train and test. List a dataset’s split names with the get_dataset_split_names() function:
Copied
Then you can load a specific split with the split parameter. Loading a dataset split returns a Dataset object:
Copied
If you don’t specify a split, 🌍 Datasets returns a DatasetDict object instead:
Copied
Configurations
Some datasets contain several sub-datasets. For example, the MInDS-14 dataset has several sub-datasets, each one containing audio data in a different language. These sub-datasets are known as configurations, and you must explicitly select one when loading the dataset. If you don’t provide a configuration name, 🌍 Datasets will raise a ValueError and remind you to choose a configuration.
Use the get_dataset_config_names() function to retrieve a list of all the possible configurations available to your dataset:
Copied
Then load the configuration you want:
Copied
Last updated