Datasets
  • 🌍GET STARTED
    • Datasets
    • Quickstart
    • Installation
  • 🌍TUTORIALS
    • Overview
    • Load a dataset from the Hub
    • Know your dataset
    • Preprocess
    • Evaluate predictions
    • Create a data
    • Share a dataset to the Hub
  • 🌍HOW-TO GUIDES
    • Overview
    • 🌍GENERAL USAGE
      • Load
      • Process
      • Stream
      • Use with TensorFlow
      • Use with PyTorch
      • Use with JAX
      • Use with Spark
      • Cache management
      • Cloud storage
      • Search index
      • Metrics
      • Beam Datasets
    • 🌍AUDIO
      • Load audio data
      • Process audio data
      • Create an audio dataset
    • 🌍VISION
      • Load image data
      • Process image data
      • Create an image dataset
      • Depth estimation
      • Image classification
      • Semantic segmentation
      • Object detection
    • 🌍TEXT
      • Load text data
      • Process text data
    • 🌍TABULAR
      • Load tabular data
    • 🌍DATASET REPOSITORY
      • Share
      • Create a dataset card
      • Structure your repository
      • Create a dataset loading script
  • 🌍CONCEPTUAL GUIDES
    • Datasets with Arrow
    • The cache
    • Dataset or IterableDataset
    • Dataset features
    • Build and load
    • Batch mapping
    • All about metrics
  • 🌍REFERENCE
    • Main classes
    • Builder classes
    • Loading methods
    • Table Classes
    • Logging methods
    • Task templates
Powered by GitBook
On this page
  • Loading methods
  • Datasets
  • Metrics
  • From files
  1. REFERENCE

Loading methods

PreviousBuilder classesNextTable Classes

Last updated 1 year ago

Loading methods

Methods for listing and loading datasets and metrics:

Datasets

datasets.list_datasets

( with_community_datasets = Truewith_details = False )

Parameters

  • with_community_datasets (bool, optional, defaults to True) — Include the community provided datasets.

  • with_details (bool, optional, defaults to False) — Return the full details on the datasets instead of only the short name.

List all the datasets scripts available on the BOINC AI Hub.

Example:

Copied

>>> from datasets import list_datasets
>>> list_datasets()
['acronym_identification',
 'ade_corpus_v2',
 'adversarial_qa',
 'aeslc',
 'afrikaans_ner_corpus',
 'ag_news',
 ...
]

datasets.load_dataset

Parameters

  • path (str) — Path or name of the dataset. Depending on path, the dataset builder that is used comes from a generic dataset script (JSON, CSV, Parquet, text etc.) or from the dataset script (a python file) inside the dataset directory.

    For local datasets:

    • if path is a local directory (containing data files only) -> load a generic dataset builder (csv, json, text etc.) based on the content of the directory e.g. './path/to/directory/with/my/csv/data'.

    • if path is a local dataset script or a directory containing a local dataset script (if the script has the same name as the directory) -> load the dataset builder from the dataset script e.g. './dataset/squad' or './dataset/squad/squad.py'.

    For datasets on the BOINC AI Hub (list all available datasets with boincai_hub.list_datasets)

    • if path is a dataset repository on the HF hub (containing data files only) -> load a generic dataset builder (csv, text etc.) based on the content of the repository e.g. 'username/dataset_name', a dataset repository on the HF hub containing your data files.

    • if path is a dataset repository on the HF hub with a dataset script (if the script has the same name as the directory) -> load the dataset builder from the dataset script in the dataset repository e.g. glue, squad, 'username/dataset_name', a dataset repository on the HF hub containing a dataset script 'dataset_name.py'.

  • name (str, optional) — Defining the name of the dataset configuration.

  • data_dir (str, optional) — Defining the data_dir of the dataset configuration. If specified for the generic builders (csv, text etc.) or the Hub datasets and data_files is None, the behavior is equal to passing os.path.join(data_dir, **) as data_files to reference all the files in a directory.

  • data_files (str or Sequence or Mapping, optional) — Path(s) to source data file(s).

  • split (Split or str) — Which split of the data to load. If None, will return a dict with all splits (typically datasets.Split.TRAIN and datasets.Split.TEST). If given, will return a single Dataset. Splits can be combined and specified like in tensorflow-datasets.

  • cache_dir (str, optional) — Directory to read/write data. Defaults to "~/.cache/huggingface/datasets".

  • features (Features, optional) — Set the features type to use for this dataset.

  • Added in 2.9.1

  • ignore_verifications (bool, defaults to False) — Ignore the verifications of the downloaded/processed dataset information (checksums/size/splits/…).

    Deprecated in 2.9.1

    ignore_verifications was deprecated in version 2.9.1 and will be removed in 3.0.0. Please use verification_mode instead.

  • save_infos (bool, defaults to False) — Save the dataset information (checksums/size/splits/…).

  • token (str or bool, optional) — Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If True, or not specified, will get token from "~/.huggingface".

  • use_auth_token (str or bool, optional) — Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If True, or not specified, will get token from "~/.huggingface".

    Deprecated in 2.14.0

    use_auth_token was deprecated in favor of token in version 2.14.0 and will be removed in 3.0.0.

  • Deprecated in 2.13.0

    task was deprecated in version 2.13.0 and will be removed in 3.0.0.

  • Note that streaming works for datasets that use data formats that support being iterated over like txt, csv, jsonl for example. Json files may be downloaded completely. Also streaming from remote zip or gzip files is supported but other compressed formats like rar and xz are not yet supported. The tgz format doesn’t allow streaming.

  • num_proc (int, optional, defaults to None) — Number of processes when downloading and generating the dataset locally. Multiprocessing is disabled by default.

    Added in 2.7.0

  • storage_options (dict, optional, defaults to None) — Experimental. Key/value pairs to be passed on to the dataset file-system backend, if any.

    Added in 2.11.0

Returns

  • if split is not None: the dataset requested,

  • if split is not None, the dataset is requested

  • if split is None, a ~datasets.streaming.IterableDatasetDict with each split.

Load a dataset from the BOINC AI Hub, or a local dataset.

A dataset is a directory that contains:

  • some data files in generic formats (JSON, CSV, Parquet, text, etc.).

  • and optionally a dataset script, if it requires some code to read the data files. This is used to load any kind of formats or structures.

Note that dataset scripts can also download and read data files from anywhere - in case your data files already exist online.

This function does the following under the hood:

  1. Download and import in the library the dataset script from path if it’s not already cached inside the library.

    If the dataset has no dataset script, then a generic dataset script is imported instead (JSON, CSV, Parquet, text, etc.)

    Dataset scripts are small python scripts that define dataset builders. They define the citation, info and format of the dataset, contain the path or URL to the original data files and the code to load examples from the original data files.

  2. Run the dataset script which will:

    • Download the dataset file from the original URL (see the script) if it’s not already available locally or cached.

    • Process and cache the dataset in typed Arrow tables for caching.

      Arrow table are arbitrarily long, typed tables which can store nested objects and be mapped to numpy/pandas/python generic types. They can be directly accessed from disk, loaded in RAM or even streamed over the web.

  3. Return a dataset built from the requested splits in split (default: all).

It also allows to load a dataset from a local directory or a dataset repository on the BOINC AI Hub without dataset script. In this case, it automatically loads all the data files from the directory or the dataset repository.

Example:

Load a dataset from the BOINC AI Hub:

Copied

>>> from datasets import load_dataset
>>> ds = load_dataset('rotten_tomatoes', split='train')

# Map data files to splits
>>> data_files = {'train': 'train.csv', 'test': 'test.csv'}
>>> ds = load_dataset('namespace/your_dataset_name', data_files=data_files)

Load a local dataset:

Copied

# Load a CSV file
>>> from datasets import load_dataset
>>> ds = load_dataset('csv', data_files='path/to/local/my_dataset.csv')

# Load a JSON file
>>> from datasets import load_dataset
>>> ds = load_dataset('json', data_files='path/to/local/my_dataset.json')

# Load from a local loading script
>>> from datasets import load_dataset
>>> ds = load_dataset('path/to/local/loading_script/loading_script.py', split='train')

Copied

>>> from datasets import load_dataset
>>> ds = load_dataset('rotten_tomatoes', split='train', streaming=True)

Load an image dataset with the ImageFolder dataset builder:

Copied

>>> from datasets import load_dataset
>>> ds = load_dataset('imagefolder', data_dir='/path/to/images', split='train')

datasets.load_from_disk

Parameters

  • fs (~filesystems.S3FileSystem or fsspec.spec.AbstractFileSystem, optional) — Instance of the remote filesystem used to download the files from.

    Deprecated in 2.9.0

    fs was deprecated in version 2.9.0 and will be removed in 3.0.0. Please use storage_options instead, e.g. storage_options=fs.storage_options.

  • storage_options (dict, optional) — Key/value pairs to be passed on to the file-system backend, if any.

    Added in 2.9.0

Returns

  • If dataset_path is a path of a dataset directory: the dataset requested.

Example:

Copied

>>> from datasets import load_from_disk
>>> ds = load_from_disk('path/to/dataset/directory')

datasets.load_dataset_builder

( path: strname: typing.Optional[str] = Nonedata_dir: typing.Optional[str] = Nonedata_files: typing.Union[str, typing.Sequence[str], typing.Mapping[str, typing.Union[str, typing.Sequence[str]]], NoneType] = Nonecache_dir: typing.Optional[str] = Nonefeatures: typing.Optional[datasets.features.features.Features] = Nonedownload_config: typing.Optional[datasets.download.download_config.DownloadConfig] = Nonedownload_mode: typing.Union[datasets.download.download_manager.DownloadMode, str, NoneType] = Nonerevision: typing.Union[str, datasets.utils.version.Version, NoneType] = Nonetoken: typing.Union[bool, str, NoneType] = Noneuse_auth_token = 'deprecated'storage_options: typing.Optional[typing.Dict] = None**config_kwargs )

Parameters

  • path (str) — Path or name of the dataset. Depending on path, the dataset builder that is used comes from a generic dataset script (JSON, CSV, Parquet, text etc.) or from the dataset script (a python file) inside the dataset directory.

    For local datasets:

    • if path is a local directory (containing data files only) -> load a generic dataset builder (csv, json, text etc.) based on the content of the directory e.g. './path/to/directory/with/my/csv/data'.

    • if path is a local dataset script or a directory containing a local dataset script (if the script has the same name as the directory) -> load the dataset builder from the dataset script e.g. './dataset/squad' or './dataset/squad/squad.py'.

    For datasets on the BOINC AI Hub (list all available datasets with boincai_hub.list_datasets)

    • if path is a dataset repository on the HF hub (containing data files only) -> load a generic dataset builder (csv, text etc.) based on the content of the repository e.g. 'username/dataset_name', a dataset repository on the HF hub containing your data files.

    • if path is a dataset repository on the HF hub with a dataset script (if the script has the same name as the directory) -> load the dataset builder from the dataset script in the dataset repository e.g. glue, squad, 'username/dataset_name', a dataset repository on the HF hub containing a dataset script 'dataset_name.py'.

  • name (str, optional) — Defining the name of the dataset configuration.

  • data_dir (str, optional) — Defining the data_dir of the dataset configuration. If specified for the generic builders (csv, text etc.) or the Hub datasets and data_files is None, the behavior is equal to passing os.path.join(data_dir, **) as data_files to reference all the files in a directory.

  • data_files (str or Sequence or Mapping, optional) — Path(s) to source data file(s).

  • cache_dir (str, optional) — Directory to read/write data. Defaults to "~/.cache/huggingface/datasets".

  • token (str or bool, optional) — Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If True, or not specified, will get token from "~/.huggingface".

  • use_auth_token (str or bool, optional) — Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If True, or not specified, will get token from "~/.huggingface".

    Deprecated in 2.14.0

    use_auth_token was deprecated in favor of token in version 2.14.0 and will be removed in 3.0.0.

  • storage_options (dict, optional, defaults to None) — Experimental. Key/value pairs to be passed on to the dataset file-system backend, if any.

    Added in 2.11.0

Load a dataset builder from the BOINC AI Hub, or a local dataset. A dataset builder can be used to inspect general information that is required to build a dataset (cache directory, config, dataset info, etc.) without downloading the dataset itself.

A dataset is a directory that contains:

  • some data files in generic formats (JSON, CSV, Parquet, text, etc.)

  • and optionally a dataset script, if it requires some code to read the data files. This is used to load any kind of formats or structures.

Note that dataset scripts can also download and read data files from anywhere - in case your data files already exist online.

Example:

Copied

>>> from datasets import load_dataset_builder
>>> ds_builder = load_dataset_builder('rotten_tomatoes')
>>> ds_builder.info.features
{'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None),
 'text': Value(dtype='string', id=None)}

datasets.get_dataset_config_names

( path: strrevision: typing.Union[str, datasets.utils.version.Version, NoneType] = Nonedownload_config: typing.Optional[datasets.download.download_config.DownloadConfig] = Nonedownload_mode: typing.Union[datasets.download.download_manager.DownloadMode, str, NoneType] = Nonedynamic_modules_path: typing.Optional[str] = Nonedata_files: typing.Union[str, typing.List, typing.Dict, NoneType] = None**download_kwargs )

Parameters

  • path (str) — path to the dataset processing script with the dataset builder. Can be either:

    • a local path to processing script or the directory containing the script (if the script has the same name as the directory), e.g. './dataset/squad' or './dataset/squad/squad.py'

  • revision (Union[str, datasets.Version], optional) — If specified, the dataset module will be loaded from the datasets repository at this version. By default:

    • it is set to the local version of the lib.

    • it will also try to load it from the main branch if it’s not available at the local version of the lib. Specifying a version that is different from your local version of the lib might cause compatibility issues.

  • dynamic_modules_path (str, defaults to ~/.cache/huggingface/modules/datasets_modules) — Optional path to the directory in which the dynamic modules are saved. It must have been initialized with init_dynamic_modules. By default the datasets and metrics are stored inside the datasets_modules module.

  • data_files (Union[Dict, List, str], optional) — Defining the data_files of the dataset configuration.

Get the list of available config names for a particular dataset.

Example:

Copied

>>> from datasets import get_dataset_config_names
>>> get_dataset_config_names("glue")
['cola',
 'sst2',
 'mrpc',
 'qqp',
 'stsb',
 'mnli',
 'mnli_mismatched',
 'mnli_matched',
 'qnli',
 'rte',
 'wnli',
 'ax']

datasets.get_dataset_infos

( path: strdata_files: typing.Union[str, typing.List, typing.Dict, NoneType] = Nonedownload_config: typing.Optional[datasets.download.download_config.DownloadConfig] = Nonedownload_mode: typing.Union[datasets.download.download_manager.DownloadMode, str, NoneType] = Nonerevision: typing.Union[str, datasets.utils.version.Version, NoneType] = Nonetoken: typing.Union[bool, str, NoneType] = Noneuse_auth_token = 'deprecated'**config_kwargs )

Parameters

  • path (str) — path to the dataset processing script with the dataset builder. Can be either:

    • a local path to processing script or the directory containing the script (if the script has the same name as the directory), e.g. './dataset/squad' or './dataset/squad/squad.py'

  • revision (Union[str, datasets.Version], optional) — If specified, the dataset module will be loaded from the datasets repository at this version. By default:

    • it is set to the local version of the lib.

    • it will also try to load it from the main branch if it’s not available at the local version of the lib. Specifying a version that is different from your local version of the lib might cause compatibility issues.

  • data_files (Union[Dict, List, str], optional) — Defining the data_files of the dataset configuration.

  • token (str or bool, optional) — Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If True, or not specified, will get token from "~/.huggingface".

  • use_auth_token (str or bool, optional) — Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If True, or not specified, will get token from "~/.huggingface".

    Deprecated in 2.14.0

    use_auth_token was deprecated in favor of token in version 2.14.0 and will be removed in 3.0.0.

  • **config_kwargs (additional keyword arguments) — Optional attributes for builder class which will override the attributes if supplied.

Get the meta information about a dataset, returned as a dict mapping config name to DatasetInfoDict.

Example:

Copied

>>> from datasets import get_dataset_infos
>>> get_dataset_infos('rotten_tomatoes')
{'default': DatasetInfo(description="Movie Review Dataset.
 is a dataset of containing 5,331 positive and 5,331 negative processed
ences from Rotten Tomatoes movie reviews...), ...}

datasets.get_dataset_split_names

( path: strconfig_name: typing.Optional[str] = Nonedata_files: typing.Union[str, typing.Sequence[str], typing.Mapping[str, typing.Union[str, typing.Sequence[str]]], NoneType] = Nonedownload_config: typing.Optional[datasets.download.download_config.DownloadConfig] = Nonedownload_mode: typing.Union[datasets.download.download_manager.DownloadMode, str, NoneType] = Nonerevision: typing.Union[str, datasets.utils.version.Version, NoneType] = Nonetoken: typing.Union[bool, str, NoneType] = Noneuse_auth_token = 'deprecated'**config_kwargs )

Parameters

  • path (str) — path to the dataset processing script with the dataset builder. Can be either:

    • a local path to processing script or the directory containing the script (if the script has the same name as the directory), e.g. './dataset/squad' or './dataset/squad/squad.py'

  • config_name (str, optional) — Defining the name of the dataset configuration.

  • data_files (str or Sequence or Mapping, optional) — Path(s) to source data file(s).

  • token (str or bool, optional) — Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If True, or not specified, will get token from "~/.huggingface".

  • use_auth_token (str or bool, optional) — Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If True, or not specified, will get token from "~/.huggingface".

    Deprecated in 2.14.0

    use_auth_token was deprecated in favor of token in version 2.14.0 and will be removed in 3.0.0.

  • **config_kwargs (additional keyword arguments) — Optional attributes for builder class which will override the attributes if supplied.

Get the list of available splits for a particular config and dataset.

Example:

Copied

>>> from datasets import get_dataset_split_names
>>> get_dataset_split_names('rotten_tomatoes')
['train', 'validation', 'test']

datasets.inspect_dataset

( path: strlocal_path: strdownload_config: typing.Optional[datasets.download.download_config.DownloadConfig] = None**download_kwargs )

Parameters

  • path (str) — Path to the dataset processing script with the dataset builder. Can be either:

    • a local path to processing script or the directory containing the script (if the script has the same name as the directory), e.g. './dataset/squad' or './dataset/squad/squad.py'.

  • local_path (str) — Path to the local folder to copy the dataset script to.

Allow inspection/modification of a dataset script by copying on local drive at local_path.

Metrics

datasets.list_metrics

( with_community_metrics = Truewith_details = False )

Parameters

  • with_community_metrics (bool, optional, default True) — Include the community provided metrics.

  • with_details (bool, optional, default False) — Return the full details on the metrics instead of only the short name.

List all the metrics script available on the BOINC AI Hub.

Deprecated in 2.5.0

Example:

Copied

>>> from datasets import list_metrics
>>> list_metrics()
['accuracy',
 'bertscore',
 'bleu',
 'bleurt',
 'cer',
 'chrf',
 ...
]

datasets.load_metric

( path: strconfig_name: typing.Optional[str] = Noneprocess_id: int = 0num_process: int = 1cache_dir: typing.Optional[str] = Noneexperiment_id: typing.Optional[str] = Nonekeep_in_memory: bool = Falsedownload_config: typing.Optional[datasets.download.download_config.DownloadConfig] = Nonedownload_mode: typing.Union[datasets.download.download_manager.DownloadMode, str, NoneType] = Nonerevision: typing.Union[str, datasets.utils.version.Version, NoneType] = None**metric_init_kwargs )

Parameters

  • path (str) — path to the metric processing script with the metric builder. Can be either:

    • a local path to processing script or the directory containing the script (if the script has the same name as the directory), e.g. './metrics/rouge' or './metrics/rogue/rouge.py'

    • a metric identifier on the BOINC AI datasets repo (list all available metrics with datasets.list_metrics()) e.g. 'rouge' or 'bleu'

  • config_name (str, optional) — selecting a configuration for the metric (e.g. the GLUE metric has a configuration for each subset)

  • process_id (int, optional) — for distributed evaluation: id of the process

  • num_process (int, optional) — for distributed evaluation: total number of processes

  • cache_dir (Optional str) — path to store the temporary predictions and references (default to ~/.cache/huggingface/metrics/)

  • experiment_id (str) — A specific experiment id. This is used if several distributed evaluations share the same file system. This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1).

  • keep_in_memory (bool) — Whether to store the temporary results in memory (defaults to False)

  • download_config (Optional datasets.DownloadConfig — specific download configuration parameters.

  • revision (Optional Union[str, datasets.Version]) — if specified, the module will be loaded from the datasets repository at this version. By default, it is set to the local version of the lib. Specifying a version that is different from your local version of the lib might cause compatibility issues.

Load a datasets.Metric.

Deprecated in 2.5.0

Example:

Copied

>>> from datasets import load_metric
>>> accuracy = load_metric('accuracy')
>>> accuracy.compute(references=[1, 0], predictions=[1, 1])
{'accuracy': 0.5}

datasets.inspect_metric

( path: strlocal_path: strdownload_config: typing.Optional[datasets.download.download_config.DownloadConfig] = None**download_kwargs )

Parameters

  • path (str) — path to the dataset processing script with the dataset builder. Can be either:

    • a local path to processing script or the directory containing the script (if the script has the same name as the directory), e.g. './dataset/squad' or './dataset/squad/squad.py'

    • a dataset identifier on the BOINC AI Hub (list all available datasets and ids with datasets.list_datasets()) e.g. 'squad', 'glue' or 'openai/webtext'

  • local_path (str) — path to the local folder to copy the datset script to.

  • download_config (Optional datasets.DownloadConfig) — specific download configuration parameters.

  • **download_kwargs (additional keyword arguments) — optional attributes for DownloadConfig() which will override the attributes in download_config if supplied.

Allow inspection/modification of a metric script by copying it on local drive at local_path.

Deprecated in 2.5.0

From files

Configurations used to load data files. They are used when loading local files or a dataset repository:

  • local files: load_dataset("parquet", data_dir="path/to/data/dir")

  • dataset repository: load_dataset("allenai/c4")

Copied

load_dataset("csv", data_dir="path/to/data/dir", sep="\t")

Text

class datasets.packaged_modules.text.TextConfig

( name: str = 'default'version: typing.Union[str, datasets.utils.version.Version, NoneType] = 0.0.0data_dir: typing.Optional[str] = Nonedata_files: typing.Optional[datasets.data_files.DataFilesDict] = Nonedescription: typing.Optional[str] = Nonefeatures: typing.Optional[datasets.features.features.Features] = Noneencoding: str = 'utf-8'errors: dataclasses.InitVar[typing.Optional[str]] = 'deprecated'encoding_errors: typing.Optional[str] = Nonechunksize: int = 10485760keep_linebreaks: bool = Falsesample_by: str = 'line' )

BuilderConfig for text files.

class datasets.packaged_modules.text.Text

( cache_dir: typing.Optional[str] = Nonedataset_name: typing.Optional[str] = Noneconfig_name: typing.Optional[str] = Nonehash: typing.Optional[str] = Nonebase_path: typing.Optional[str] = Noneinfo: typing.Optional[datasets.info.DatasetInfo] = Nonefeatures: typing.Optional[datasets.features.features.Features] = Nonetoken: typing.Union[bool, str, NoneType] = Noneuse_auth_token = 'deprecated'repo_id: typing.Optional[str] = Nonedata_files: typing.Union[str, list, dict, datasets.data_files.DataFilesDict, NoneType] = Nonedata_dir: typing.Optional[str] = Nonestorage_options: typing.Optional[dict] = Nonewriter_batch_size: typing.Optional[int] = Nonename = 'deprecated'**config_kwargs )

CSV

class datasets.packaged_modules.csv.CsvConfig

( name: str = 'default'version: typing.Union[str, datasets.utils.version.Version, NoneType] = 0.0.0data_dir: typing.Optional[str] = Nonedata_files: typing.Optional[datasets.data_files.DataFilesDict] = Nonedescription: typing.Optional[str] = Nonesep: str = ','delimiter: typing.Optional[str] = Noneheader: typing.Union[int, typing.List[int], str, NoneType] = 'infer'names: typing.Optional[typing.List[str]] = Nonecolumn_names: typing.Optional[typing.List[str]] = Noneindex_col: typing.Union[int, str, typing.List[int], typing.List[str], NoneType] = Noneusecols: typing.Union[typing.List[int], typing.List[str], NoneType] = Noneprefix: typing.Optional[str] = Nonemangle_dupe_cols: bool = Trueengine: typing.Union[typing.Literal['c', 'python', 'pyarrow'], NoneType] = Noneconverters: typing.Dict[typing.Union[int, str], typing.Callable[[typing.Any], typing.Any]] = Nonetrue_values: typing.Optional[list] = Nonefalse_values: typing.Optional[list] = Noneskipinitialspace: bool = Falseskiprows: typing.Union[int, typing.List[int], NoneType] = Nonenrows: typing.Optional[int] = Nonena_values: typing.Union[str, typing.List[str], NoneType] = Nonekeep_default_na: bool = Truena_filter: bool = Trueverbose: bool = Falseskip_blank_lines: bool = Truethousands: typing.Optional[str] = Nonedecimal: str = '.'lineterminator: typing.Optional[str] = Nonequotechar: str = '"'quoting: int = 0escapechar: typing.Optional[str] = Nonecomment: typing.Optional[str] = Noneencoding: typing.Optional[str] = Nonedialect: typing.Optional[str] = Noneerror_bad_lines: bool = Truewarn_bad_lines: bool = Trueskipfooter: int = 0doublequote: bool = Truememory_map: bool = Falsefloat_precision: typing.Optional[str] = Nonechunksize: int = 10000features: typing.Optional[datasets.features.features.Features] = Noneencoding_errors: typing.Optional[str] = 'strict'on_bad_lines: typing.Literal['error', 'warn', 'skip'] = 'error'date_format: typing.Optional[str] = None )

BuilderConfig for CSV.

class datasets.packaged_modules.csv.Csv

( cache_dir: typing.Optional[str] = Nonedataset_name: typing.Optional[str] = Noneconfig_name: typing.Optional[str] = Nonehash: typing.Optional[str] = Nonebase_path: typing.Optional[str] = Noneinfo: typing.Optional[datasets.info.DatasetInfo] = Nonefeatures: typing.Optional[datasets.features.features.Features] = Nonetoken: typing.Union[bool, str, NoneType] = Noneuse_auth_token = 'deprecated'repo_id: typing.Optional[str] = Nonedata_files: typing.Union[str, list, dict, datasets.data_files.DataFilesDict, NoneType] = Nonedata_dir: typing.Optional[str] = Nonestorage_options: typing.Optional[dict] = Nonewriter_batch_size: typing.Optional[int] = Nonename = 'deprecated'**config_kwargs )

JSON

class datasets.packaged_modules.json.JsonConfig

( name: str = 'default'version: typing.Union[str, datasets.utils.version.Version, NoneType] = 0.0.0data_dir: typing.Optional[str] = Nonedata_files: typing.Optional[datasets.data_files.DataFilesDict] = Nonedescription: typing.Optional[str] = Nonefeatures: typing.Optional[datasets.features.features.Features] = Noneencoding: str = 'utf-8'encoding_errors: typing.Optional[str] = Nonefield: typing.Optional[str] = Noneuse_threads: bool = Trueblock_size: typing.Optional[int] = Nonechunksize: int = 10485760newlines_in_values: typing.Optional[bool] = None )

BuilderConfig for JSON.

class datasets.packaged_modules.json.Json

( cache_dir: typing.Optional[str] = Nonedataset_name: typing.Optional[str] = Noneconfig_name: typing.Optional[str] = Nonehash: typing.Optional[str] = Nonebase_path: typing.Optional[str] = Noneinfo: typing.Optional[datasets.info.DatasetInfo] = Nonefeatures: typing.Optional[datasets.features.features.Features] = Nonetoken: typing.Union[bool, str, NoneType] = Noneuse_auth_token = 'deprecated'repo_id: typing.Optional[str] = Nonedata_files: typing.Union[str, list, dict, datasets.data_files.DataFilesDict, NoneType] = Nonedata_dir: typing.Optional[str] = Nonestorage_options: typing.Optional[dict] = Nonewriter_batch_size: typing.Optional[int] = Nonename = 'deprecated'**config_kwargs )

Parquet

class datasets.packaged_modules.parquet.ParquetConfig

( name: str = 'default'version: typing.Union[str, datasets.utils.version.Version, NoneType] = 0.0.0data_dir: typing.Optional[str] = Nonedata_files: typing.Optional[datasets.data_files.DataFilesDict] = Nonedescription: typing.Optional[str] = Nonebatch_size: int = 10000columns: typing.Optional[typing.List[str]] = Nonefeatures: typing.Optional[datasets.features.features.Features] = None )

BuilderConfig for Parquet.

class datasets.packaged_modules.parquet.Parquet

( cache_dir: typing.Optional[str] = Nonedataset_name: typing.Optional[str] = Noneconfig_name: typing.Optional[str] = Nonehash: typing.Optional[str] = Nonebase_path: typing.Optional[str] = Noneinfo: typing.Optional[datasets.info.DatasetInfo] = Nonefeatures: typing.Optional[datasets.features.features.Features] = Nonetoken: typing.Union[bool, str, NoneType] = Noneuse_auth_token = 'deprecated'repo_id: typing.Optional[str] = Nonedata_files: typing.Union[str, list, dict, datasets.data_files.DataFilesDict, NoneType] = Nonedata_dir: typing.Optional[str] = Nonestorage_options: typing.Optional[dict] = Nonewriter_batch_size: typing.Optional[int] = Nonename = 'deprecated'**config_kwargs )

Arrow

class datasets.packaged_modules.arrow.ArrowConfig

( name: str = 'default'version: typing.Union[str, datasets.utils.version.Version, NoneType] = 0.0.0data_dir: typing.Optional[str] = Nonedata_files: typing.Optional[datasets.data_files.DataFilesDict] = Nonedescription: typing.Optional[str] = Nonefeatures: typing.Optional[datasets.features.features.Features] = None )

BuilderConfig for Arrow.

class datasets.packaged_modules.arrow.Arrow

( cache_dir: typing.Optional[str] = Nonedataset_name: typing.Optional[str] = Noneconfig_name: typing.Optional[str] = Nonehash: typing.Optional[str] = Nonebase_path: typing.Optional[str] = Noneinfo: typing.Optional[datasets.info.DatasetInfo] = Nonefeatures: typing.Optional[datasets.features.features.Features] = Nonetoken: typing.Union[bool, str, NoneType] = Noneuse_auth_token = 'deprecated'repo_id: typing.Optional[str] = Nonedata_files: typing.Union[str, list, dict, datasets.data_files.DataFilesDict, NoneType] = Nonedata_dir: typing.Optional[str] = Nonestorage_options: typing.Optional[dict] = Nonewriter_batch_size: typing.Optional[int] = Nonename = 'deprecated'**config_kwargs )

SQL

class datasets.packaged_modules.sql.SqlConfig

( name: str = 'default'version: typing.Union[str, datasets.utils.version.Version, NoneType] = 0.0.0data_dir: typing.Optional[str] = Nonedata_files: typing.Optional[datasets.data_files.DataFilesDict] = Nonedescription: typing.Optional[str] = Nonesql: typing.Union[str, ForwardRef('sqlalchemy.sql.Selectable')] = Nonecon: typing.Union[str, ForwardRef('sqlalchemy.engine.Connection'), ForwardRef('sqlalchemy.engine.Engine'), ForwardRef('sqlite3.Connection')] = Noneindex_col: typing.Union[str, typing.List[str], NoneType] = Nonecoerce_float: bool = Trueparams: typing.Union[typing.List, typing.Tuple, typing.Dict, NoneType] = Noneparse_dates: typing.Union[typing.List, typing.Dict, NoneType] = Nonecolumns: typing.Optional[typing.List[str]] = Nonechunksize: typing.Optional[int] = 10000features: typing.Optional[datasets.features.features.Features] = None )

BuilderConfig for SQL.

class datasets.packaged_modules.sql.Sql

( cache_dir: typing.Optional[str] = Nonedataset_name: typing.Optional[str] = Noneconfig_name: typing.Optional[str] = Nonehash: typing.Optional[str] = Nonebase_path: typing.Optional[str] = Noneinfo: typing.Optional[datasets.info.DatasetInfo] = Nonefeatures: typing.Optional[datasets.features.features.Features] = Nonetoken: typing.Union[bool, str, NoneType] = Noneuse_auth_token = 'deprecated'repo_id: typing.Optional[str] = Nonedata_files: typing.Union[str, list, dict, datasets.data_files.DataFilesDict, NoneType] = Nonedata_dir: typing.Optional[str] = Nonestorage_options: typing.Optional[dict] = Nonewriter_batch_size: typing.Optional[int] = Nonename = 'deprecated'**config_kwargs )

Images

class datasets.packaged_modules.imagefolder.ImageFolderConfig

( name: str = 'default'version: typing.Union[str, datasets.utils.version.Version, NoneType] = 0.0.0data_dir: typing.Optional[str] = Nonedata_files: typing.Optional[datasets.data_files.DataFilesDict] = Nonedescription: typing.Optional[str] = Nonefeatures: typing.Optional[datasets.features.features.Features] = Nonedrop_labels: bool = Nonedrop_metadata: bool = None )

BuilderConfig for ImageFolder.

class datasets.packaged_modules.imagefolder.ImageFolder

( cache_dir: typing.Optional[str] = Nonedataset_name: typing.Optional[str] = Noneconfig_name: typing.Optional[str] = Nonehash: typing.Optional[str] = Nonebase_path: typing.Optional[str] = Noneinfo: typing.Optional[datasets.info.DatasetInfo] = Nonefeatures: typing.Optional[datasets.features.features.Features] = Nonetoken: typing.Union[bool, str, NoneType] = Noneuse_auth_token = 'deprecated'repo_id: typing.Optional[str] = Nonedata_files: typing.Union[str, list, dict, datasets.data_files.DataFilesDict, NoneType] = Nonedata_dir: typing.Optional[str] = Nonestorage_options: typing.Optional[dict] = Nonewriter_batch_size: typing.Optional[int] = Nonename = 'deprecated'**config_kwargs )

Audio

class datasets.packaged_modules.audiofolder.AudioFolderConfig

( name: str = 'default'version: typing.Union[str, datasets.utils.version.Version, NoneType] = 0.0.0data_dir: typing.Optional[str] = Nonedata_files: typing.Optional[datasets.data_files.DataFilesDict] = Nonedescription: typing.Optional[str] = Nonefeatures: typing.Optional[datasets.features.features.Features] = Nonedrop_labels: bool = Nonedrop_metadata: bool = None )

Builder Config for AudioFolder.

class datasets.packaged_modules.audiofolder.AudioFolder

( cache_dir: typing.Optional[str] = Nonedataset_name: typing.Optional[str] = Noneconfig_name: typing.Optional[str] = Nonehash: typing.Optional[str] = Nonebase_path: typing.Optional[str] = Noneinfo: typing.Optional[datasets.info.DatasetInfo] = Nonefeatures: typing.Optional[datasets.features.features.Features] = Nonetoken: typing.Union[bool, str, NoneType] = Noneuse_auth_token = 'deprecated'repo_id: typing.Optional[str] = Nonedata_files: typing.Union[str, list, dict, datasets.data_files.DataFilesDict, NoneType] = Nonedata_dir: typing.Optional[str] = Nonestorage_options: typing.Optional[dict] = Nonewriter_batch_size: typing.Optional[int] = Nonename = 'deprecated'**config_kwargs )

( path: strname: typing.Optional[str] = Nonedata_dir: typing.Optional[str] = Nonedata_files: typing.Union[str, typing.Sequence[str], typing.Mapping[str, typing.Union[str, typing.Sequence[str]]], NoneType] = Nonesplit: typing.Union[str, datasets.splits.Split, NoneType] = Nonecache_dir: typing.Optional[str] = Nonefeatures: typing.Optional[datasets.features.features.Features] = Nonedownload_config: typing.Optional[datasets.download.download_config.DownloadConfig] = Nonedownload_mode: typing.Union[datasets.download.download_manager.DownloadMode, str, NoneType] = Noneverification_mode: typing.Union[datasets.utils.info_utils.VerificationMode, str, NoneType] = Noneignore_verifications = 'deprecated'keep_in_memory: typing.Optional[bool] = Nonesave_infos: bool = Falserevision: typing.Union[str, datasets.utils.version.Version, NoneType] = Nonetoken: typing.Union[bool, str, NoneType] = Noneuse_auth_token = 'deprecated'task = 'deprecated'streaming: bool = Falsenum_proc: typing.Optional[int] = Nonestorage_options: typing.Optional[typing.Dict] = None**config_kwargs ) → or

download_config (, optional) — Specific download configuration parameters.

download_mode ( or str, defaults to REUSE_DATASET_IF_EXISTS) — Download/generate mode.

verification_mode ( or str, defaults to BASIC_CHECKS) — Verification mode determining the checks to run on the downloaded/processed dataset information (checksums/size/splits/…).

keep_in_memory (bool, defaults to None) — Whether to copy the dataset in-memory. If None, the dataset will not be copied in-memory unless explicitly enabled by setting datasets.config.IN_MEMORY_MAX_SIZE to nonzero. See more details in the section.

revision ( or str, optional) — Version of the dataset script to load. As datasets have their own git repository on the Datasets Hub, the default version “main” corresponds to their “main” branch. You can specify a different version than the default “main” by using a commit SHA or a git tag of the dataset repository.

task (str) — The task to prepare the dataset for during training and evaluation. Casts the dataset’s to standardized column names and types as detailed in datasets.tasks.

streaming (bool, defaults to False) — If set to True, don’t download the data files. Instead, it streams the data progressively while iterating on the dataset. An or is returned instead in this case.

**config_kwargs (additional keyword arguments) — Keyword arguments to be passed to the BuilderConfig and used in the .

or

if split is None, a with each split.

or or : if streaming=True

You can find the list of datasets on the or with boincai_hub.list_datasets.

You can find the complete list of datasets in the Datasets .

Load an :

( dataset_path: strfs = 'deprecated'keep_in_memory: typing.Optional[bool] = Nonestorage_options: typing.Optional[dict] = None ) → or

dataset_path (str) — Path (e.g. "dataset/train") or remote URI (e.g. "s3://my-bucket/dataset/train") of the or directory where the dataset will be loaded from.

keep_in_memory (bool, defaults to None) — Whether to copy the dataset in-memory. If None, the dataset will not be copied in-memory unless explicitly enabled by setting datasets.config.IN_MEMORY_MAX_SIZE to nonzero. See more details in the section.

or

If dataset_path is a path of a dataset dict directory, a with each split.

Loads a dataset that was previously saved using from a dataset directory, or from a filesystem using any implementation of fsspec.spec.AbstractFileSystem.

features (, optional) — Set the features type to use for this dataset.

download_config (, optional) — Specific download configuration parameters.

download_mode ( or str, defaults to REUSE_DATASET_IF_EXISTS) — Download/generate mode.

revision ( or str, optional) — Version of the dataset script to load. As datasets have their own git repository on the Datasets Hub, the default version “main” corresponds to their “main” branch. You can specify a different version than the default “main” by using a commit SHA or a git tag of the dataset repository.

**config_kwargs (additional keyword arguments) — Keyword arguments to be passed to the and used in the .

You can find the list of datasets on the or with boincai_hub.list_datasets.

a dataset identifier on the BOINC AI Hub (list all available datasets and ids with ) e.g. 'squad', 'glue' or 'openai/webtext'

download_config (, optional) — Specific download configuration parameters.

download_mode ( or str, defaults to REUSE_DATASET_IF_EXISTS) — Download/generate mode.

**download_kwargs (additional keyword arguments) — Optional attributes for which will override the attributes in download_config if supplied, for example token.

a dataset identifier on the BOINC AI Hub (list all available datasets and ids with ) e.g. 'squad', 'glue' or`'openai/webtext'

download_config (, optional) — Specific download configuration parameters.

download_mode ( or str, defaults to REUSE_DATASET_IF_EXISTS) — Download/generate mode.

a dataset identifier on the BOINC AI Hub (list all available datasets and ids with ) e.g. 'squad', 'glue' or 'openai/webtext'

download_config (, optional) — Specific download configuration parameters.

download_mode ( or str, defaults to REUSE_DATASET_IF_EXISTS) — Download/generate mode.

revision ( or str, optional) — Version of the dataset script to load. As datasets have their own git repository on the Datasets Hub, the default version “main” corresponds to their “main” branch. You can specify a different version than the default “main” by using a commit SHA or a git tag of the dataset repository.

a dataset identifier on the BOINC AI Hub (list all available datasets and ids with ) e.g. 'squad', 'glue' or 'openai/webtext'.

download_config (, optional) — Specific download configuration parameters.

**download_kwargs (additional keyword arguments) — Optional arguments for which will override the attributes of download_config if supplied.

Metrics is deprecated in 🌍 Datasets. To learn more about how to use metrics, take a look at the library 🌍 ! In addition to metrics, you can find more tools for evaluating models and datasets.

Use evaluate.list_evaluation_modules instead, from the new library 🌍 Evaluate:

download_mode ( or str, default REUSE_DATASET_IF_EXISTS) — Download/generate mode.

Use evaluate.load instead, from the new library 🌍 Evaluate:

Use evaluate.inspect_evaluation_module instead, from the new library 🌍 Evaluate instead:

You can pass arguments to load_dataset to configure data loading. For example you can specify the sep parameter to define the that is used to load the data:

🌍
<source>
<source>
Dataset
DatasetDict
DownloadConfig
DownloadMode
VerificationMode
improve performance
Version
Features
IterableDataset
IterableDatasetDict
DatasetBuilder
Dataset
DatasetDict
DatasetDict
IterableDataset
IterableDatasetDict
Hub
Hub
IterableDataset
<source>
Dataset
DatasetDict
Dataset
DatasetDict
improve performance
Dataset
DatasetDict
DatasetDict
save_to_disk()
<source>
Features
DownloadConfig
DownloadMode
Version
BuilderConfig
DatasetBuilder
Hub
<source>
datasets.list_datasets()
DownloadConfig
DownloadMode
DownloadConfig
<source>
datasets.list_datasets()
DownloadConfig
DownloadMode
<source>
datasets.list_datasets()
DownloadConfig
DownloadMode
Version
<source>
list_datasets()
DownloadConfig
DownloadConfig
Evaluate
<source>
https://huggingface.co/docs/evaluate
<source>
DownloadMode
https://huggingface.co/docs/evaluate
<source>
https://huggingface.co/docs/evaluate
CsvConfig
<source>
<source>
<source>
<source>
<source>
<source>
<source>
<source>
<source>
<source>
<source>
<source>
<source>
<source>
<source>
<source>