How to use Fully Sharded Data Parallelism
Fully Sharded Data Parallel
To accelerate training huge models on larger batch sizes, we can use a fully sharded data parallel model. This type of data parallel paradigm enables fitting more data and larger models by sharding the optimizer states, gradients and parameters. To read more about it and the benefits, check out the Fully Sharded Data Parallel blog. We have integrated the latest PyTorchโs Fully Sharded Data Parallel (FSDP) training feature. All you need to do is enable it through the config.
How it works out of the box
On your machine(s) just run:
Copied
and answer the questions asked. This will generate a config file that will be used automatically to properly set the default options when doing
Copied
For instance, here is how you would run the NLP example (from the root of the repo) with FSDP enabled:
Copied
Copied
Currently, Accelerate
supports the following config through the CLI:
Copied
For additional and more nuanced control, you can specify other FSDP parameters via FullyShardedDataParallelPlugin
. When creating FullyShardedDataParallelPlugin
object, pass it the parameters that werenโt part of the accelerate config or if you want to override them. The FSDP parameters will be picked based on the accelerate config file or launch command arguments and other parameters that you will pass directly through the FullyShardedDataParallelPlugin
object will set/override that.
Below is an example:
Copied
Saving and loading
The new recommended way of checkpointing when using FSDP models is to use SHARDED_STATE_DICT
as StateDictType
when setting up the accelerate config. Below is the code snippet to save using save_state
utility of accelerate.
Copied
Inspect the ckeckpoint folder to see model and optimizer as shards per process:
Copied
To load them back for resuming the training, use the load_state
utility of accelerate
Copied
When using transformers save_pretrained
, pass state_dict=accelerator.get_state_dict(model)
to save the model state dict. Below is an example:
Copied
State Dict
accelerator.get_state_dict
will call the underlying model.state_dict
implementation. With a model wrapped by FSDP, the default behavior of state_dict
is to gather all of the state in the rank 0 device. This can cause CUDA out of memory errors if the parameters donโt fit on a single GPU.
To avoid this, PyTorch provides a context manager that adjusts the behavior of state_dict
. To offload some of the state dict onto CPU, you can use the following code:
Copied
You can then pass state
into the save_pretrained
method. There are several modes for StateDictType
and FullStateDictConfig
that you can use to control the behavior of state_dict
. For more information, see the PyTorch documentation.
A few caveats to be aware of
PyTorch FSDP auto wraps sub-modules, flattens the parameters and shards the parameters in place. Due to this, any optimizer created before model wrapping gets broken and occupies more memory. Hence, it is highly recommended and efficient to prepare the model before creating the optimizer.
Accelerate
will automatically wrap the model and create an optimizer for you in case of single model with a warning message.FSDP Warning: When using FSDP, it is efficient and recommended to call prepare for the model before creating the optimizer
However, below is the recommended way to prepare model and optimizer while using FSDP:
Copied
In case of a single model, if you have created the optimizer with multiple parameter groups and called prepare with them together, then the parameter groups will be lost and the following warning is displayed:
FSDP Warning: When using FSDP, several parameter groups will be conflated into a single one due to nested module wrapping and parameter flattening.
This is because parameter groups created before wrapping will have no meaning post wrapping due to parameter flattening of nested FSDP modules into 1D arrays (which can consume many layers). For instance, below are the named parameters of an FSDP model on GPU 0 (When using 2 GPUs. Around 55M (110M/2) params in 1D arrays as this will have the 1st shard of the parameters). Here, if one has applied no weight decay for [bias, LayerNorm.weight] the named parameters of an unwrapped BERT model, it canโt be applied to the below FSDP wrapped model as there are no named parameters with either of those strings and the parameters of those layers are concatenated with parameters of various other layers.
Copied
In case of multiple models, it is necessary to prepare the models before creating optimizers or else it will throw an error. Then pass the optimizers to the prepare call in the same order as corresponding models else
accelerator.save_state()
andaccelerator.load_state()
will result in wrong/unexpected behaviour.This feature is incompatible with
--predict_with_generate
in therun_translation.py
script of ๐Transformers
library.
For more control, users can leverage the FullyShardedDataParallelPlugin
. After creating an instance of this class, users can pass it to the Accelerator class instantiation. For more information on these options, please refer to the PyTorch FullyShardedDataParallel code.
Last updated