Accelerate
  • ๐ŸŒGETTING STARTED
    • BOINC AI Accelerate
    • Installation
    • Quicktour
  • ๐ŸŒTUTORIALS
    • Overview
    • Migrating to BOINC AI Accelerate
    • Launching distributed code
    • Launching distributed training from Jupyter Notebooks
  • ๐ŸŒHOW-TO GUIDES
    • Start Here!
    • Example Zoo
    • How to perform inference on large models with small resources
    • Knowing how big of a model you can fit into memory
    • How to quantize model
    • How to perform distributed inference with normal resources
    • Performing gradient accumulation
    • Accelerating training with local SGD
    • Saving and loading training states
    • Using experiment trackers
    • Debugging timeout errors
    • How to avoid CUDA Out-of-Memory
    • How to use Apple Silicon M1 GPUs
    • How to use DeepSpeed
    • How to use Fully Sharded Data Parallelism
    • How to use Megatron-LM
    • How to use BOINC AI Accelerate with SageMaker
    • How to use BOINC AI Accelerate with Intelยฎ Extension for PyTorch for cpu
  • ๐ŸŒCONCEPTS AND FUNDAMENTALS
    • BOINC AI Accelerate's internal mechanism
    • Loading big models into memory
    • Comparing performance across distributed setups
    • Executing and deferring jobs
    • Gradient synchronization
    • TPU best practices
  • ๐ŸŒREFERENCE
    • Main Accelerator class
    • Stateful configuration classes
    • The Command Line
    • Torch wrapper classes
    • Experiment trackers
    • Distributed launchers
    • DeepSpeed utilities
    • Logging
    • Working with large models
    • Kwargs handlers
    • Utility functions and classes
    • Megatron-LM Utilities
    • Fully Sharded Data Parallelism Utilities
Powered by GitBook
On this page
  • Example Zoo
  • Official Accelerate Examples:
  • Integration Examples
  • In Science
  1. HOW-TO GUIDES

Example Zoo

PreviousStart Here!NextHow to perform inference on large models with small resources

Last updated 1 year ago

Example Zoo

Below contains a non-exhuastive list of tutorials and scripts showcasing ๐ŸŒ Accelerate

Official Accelerate Examples:

Basic Examples

These examples showcase the base features of Accelerate and are a great starting point

Feature Specific Examples

These examples showcase specific features that the Accelerate framework offers

Full Examples

These examples showcase every feature in Accelerate at once that was shown in โ€œFeature Specific Examplesโ€

Integration Examples

These are tutorials from libraries that integrate with ๐ŸŒ Accelerate:

Donโ€™t find your integration here? Make a PR to include it!

Catalyst

DALLE2-pytorch

๐ŸŒ diffusers

fastai

GradsFlow

imagen-pytorch

Kornia

PyTorch Accelerated

PyTorch3D

Stable-Dreamfusion

Tez

trlx

Comfy-UI

In Science

Below contains a non-exhaustive list of papers utilizing ๐ŸŒ Accelerate.

Donโ€™t find your paper here? Make a PR to include it!

Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, Omer Levy: โ€œPick-a-Pic: An Open Dataset of User Preferences for Text-to-Image Generationโ€, 2023; .

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, Ee-Peng Lim: โ€œPlan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Modelsโ€, 2023; .

Arthur Cรขmara, Claudia Hauff: โ€œMoving Stuff Around: A study on efficiency of moving documents into memory for Neural IR modelsโ€, 2022; .

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y. Fu, Zhiqiang Xie, Beidi Chen, Clark Barrett, Joseph E. Gonzalez, Percy Liang, Christopher Rรฉ, Ion Stoica, Ce Zhang: โ€œHigh-throughput Generative Inference of Large Language Models with a Single GPUโ€, 2023; .

Peter Melchior, Yan Liang, ChangHoon Hahn, Andy Goulding: โ€œAutoencoding Galaxy Spectra I: Architectureโ€, 2022; .

Jiaao Chen, Aston Zhang, Mu Li, Alex Smola, Diyi Yang: โ€œA Cheaper and Better Diffusion Language Model with Soft-Masked Noiseโ€, 2023; .

Ayaan Haque, Matthew Tancik, Alexei A. Efros, Aleksander Holynski, Angjoo Kanazawa: โ€œInstruct-NeRF2NeRF: Editing 3D Scenes with Instructionsโ€, 2023; .

Luke Melas-Kyriazi, Christian Rupprecht, Iro Laina, Andrea Vedaldi: โ€œRealFusion: 360ยฐ Reconstruction of Any Object from a Single Imageโ€, 2023; .

Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui Zhao, Hongsheng Li: โ€œBetter Aligning Text-to-Image Models with Human Preferenceโ€, 2023; .

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, Yueting Zhuang: โ€œBOINCGPT: Solving AI Tasks with ChatGPT and its Friends in BOINC AIโ€, 2023; .

Yue Yang, Wenlin Yao, Hongming Zhang, Xiaoyang Wang, Dong Yu, Jianshu Chen: โ€œZ-LaVI: Zero-Shot Language Solver Fueled by Visual Imaginationโ€, 2022; .

Sheng-Yen Chou, Pin-Yu Chen, Tsung-Yi Ho: โ€œHow to Backdoor Diffusion Models?โ€, 2022; .

Junyoung Seo, Wooseok Jang, Min-Seop Kwak, Jaehoon Ko, Hyeonsu Kim, Junho Kim, Jin-Hwa Kim, Jiyoung Lee, Seungryong Kim: โ€œLet 2D Diffusion Model Know 3D-Consistency for Robust Text-to-3D Generationโ€, 2023; .

Or Patashnik, Daniel Garibi, Idan Azuri, Hadar Averbuch-Elor, Daniel Cohen-Or: โ€œLocalizing Object-level Shape Variations with Text-to-Image Diffusion Modelsโ€, 2023; .

Dรญdac Surรญs, Sachit Menon, Carl Vondrick: โ€œViperGPT: Visual Inference via Python Execution for Reasoningโ€, 2023; .

Chenyang Qi, Xiaodong Cun, Yong Zhang, Chenyang Lei, Xintao Wang, Ying Shan, Qifeng Chen: โ€œFateZero: Fusing Attentions for Zero-shot Text-based Video Editingโ€, 2023; .

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, Yejin Choi: โ€œNaturalProver: Grounded Mathematical Proof Generation with Language Modelsโ€, 2022; .

Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, Daniel Cohen-Or: โ€œTEXTure: Text-Guided Texturing of 3D Shapesโ€, 2023; .

Puijin Cheng, Li Lin, Yijin Huang, Huaqing He, Wenhan Luo, Xiaoying Tang: โ€œLearning Enhancement From Degradation: A Diffusion Model For Fundus Image Enhancementโ€, 2023; .

Shun Shao, Yftah Ziser, Shay Cohen: โ€œErasure of Unaligned Attributes from Neural Representationsโ€, 2023; .

Seonghyeon Ye, Hyeonbin Hwang, Sohee Yang, Hyeongu Yun, Yireun Kim, Minjoon Seo: โ€œIn-Context Instruction Learningโ€, 2023; .

Shikun Liu, Linxi Fan, Edward Johns, Zhiding Yu, Chaowei Xiao, Anima Anandkumar: โ€œPrismer: A Vision-Language Model with An Ensemble of Expertsโ€, 2023; .

Haoyu Chen, Zhihua Wang, Yang Yang, Qilin Sun, Kede Ma: โ€œLearning a Deep Color Difference Metric for Photographic Imagesโ€, 2023; .

Van-Hoang Le, Hongyu Zhang: โ€œLog Parsing with Prompt-based Few-shot Learningโ€, 2023; .

Keito Kudo, Yoichi Aoki, Tatsuki Kuribayashi, Ana Brassard, Masashi Yoshikawa, Keisuke Sakaguchi, Kentaro Inui: โ€œDo Deep Neural Networks Capture Compositionality in Arithmetic Reasoning?โ€, 2023; .

Ruoyao Wang, Peter Jansen, Marc-Alexandre Cรดtรฉ, Prithviraj Ammanabrolu: โ€œBehavior Cloned Transformers are Neurosymbolic Reasonersโ€, 2022; .

Martin Wessel, Tomรกลก Horych, Terry Ruas, Akiko Aizawa, Bela Gipp, Timo Spinde: โ€œIntroducing MBIB โ€” the first Media Bias Identification Benchmark Task and Dataset Collectionโ€, 2023; . DOI: [https://dx.doi.org/10.1145/3539618.3591882 10.1145/3539618.3591882].

Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, Daniel Cohen-Or: โ€œAttend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Modelsโ€, 2023; .

Marcio Fonseca, Yftah Ziser, Shay B. Cohen: โ€œFactorizing Content and Budget Decisions in Abstractive Summarization of Long Documentsโ€, 2022; .

Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, Daniel Cohen-Or: โ€œTEXTure: Text-Guided Texturing of 3D Shapesโ€, 2023; .

Tianxing He, Jingyu Zhang, Tianle Wang, Sachin Kumar, Kyunghyun Cho, James Glass, Yulia Tsvetkov: โ€œOn the Blind Spots of Model-Based Evaluation Metrics for Text Generationโ€, 2022; .

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, Yoav Shoham: โ€œIn-Context Retrieval-Augmented Language Modelsโ€, 2023; .

Dacheng Li, Rulin Shao, Hongyi Wang, Han Guo, Eric P. Xing, Hao Zhang: โ€œMPCFormer: fast, performant and private Transformer inference with MPCโ€, 2022; .

Baolin Peng, Michel Galley, Pengcheng He, Chris Brockett, Lars Liden, Elnaz Nouri, Zhou Yu, Bill Dolan, Jianfeng Gao: โ€œGODEL: Large-Scale Pre-Training for Goal-Directed Dialogโ€, 2022; .

Egil Rรธnningstad, Erik Velldal, Lilja ร˜vrelid: โ€œEntity-Level Sentiment Analysis (ELSA): An exploratory task surveyโ€, 2023, Proceedings of the 29th International Conference on Computational Linguistics, 2022, pages 6773-6783; .

Charlie Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, Sergey Levine: โ€œOffline RL for Natural Language Generation with Implicit Language Q Learningโ€, 2022; .

Zhiruo Wang, Shuyan Zhou, Daniel Fried, Graham Neubig: โ€œExecution-Based Evaluation for Open-Domain Code Generationโ€, 2022; .

Minh-Long Luu, Zeyi Huang, Eric P. Xing, Yong Jae Lee, Haohan Wang: โ€œExpeditious Saliency-guided Mix-up through Random Gradient Thresholdingโ€, 2022; .

Jun Hao Liew, Hanshu Yan, Daquan Zhou, Jiashi Feng: โ€œMagicMix: Semantic Mixing with Diffusion Modelsโ€, 2022; .

Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, Jianfeng Gao: โ€œLiST: Lite Prompted Self-training Makes Parameter-Efficient Few-shot Learnersโ€, 2021; .

๐ŸŒ
Barebones NLP example
Barebones distributed NLP example in a Jupyter Notebook
Barebones computer vision example
Barebones distributed computer vision example in a Jupyter Notebook
Using Accelerate in Kaggle
Automatic memory-aware gradient accumulation
Checkpointing states
Cross validation
DeepSpeed
Fully Sharded Data Parallelism
Gradient accumulation
Memory-aware batch size finder
Metric Computation
Using Trackers
Using Megatron-LM
Complete NLP example
Complete computer vision example
Very complete and extensible vision example showcasing SLURM, hydra, and a very extensible usage of the framework
Causal language model fine-tuning example
Masked language model fine-tuning example
Speech pretraining example
Translation fine-tuning example
Text classification fine-tuning example
Semantic segmentation fine-tuning example
Question answering fine-tuning example
Beam search question answering fine-tuning example
Multiple choice question answering fine-tuning example
Named entity recognition fine-tuning example
Image classification fine-tuning example
Summarization fine-tuning example
End-to-end examples on how to use AWS SageMaker integration of Accelerate
Megatron-LM examples for various NLp tasks
Distributed training tutorial with Catalyst
Fine-tuning DALLE2
Performing textual inversion with diffusers
Training DreamBooth with diffusers
Distributed training from Jupyter Notebooks with fastai
Basic distributed training examples with fastai
Auto Image Classification with GradsFlow
Fine-tuning Imagen
Fine-tuning vision models with Korniaโ€™s Trainer
Quickstart distributed training tutorial with PyTorch Accelerated
Perform Deep Learning with 3D data
Training with Stable-Dreamfusion to convert text to a 3D model
Leaf disease detection with Tez and Accelerate
How to implement a sentiment learning task with trlx
Enabling using large Stable Diffusion Models in low-vram settings using Accelerate
arXiv:2305.01569
arXiv:2305.04091
arXiv:2205.08343
arXiv:2303.06865
arXiv:2211.07890
arXiv:2304.04746
arXiv:2303.12789
arXiv:2302.10663
arXiv:2303.14420
arXiv:2303.17580
arXiv:2210.12261
arXiv:2212.05400
arXiv:2303.07937
arXiv:2303.11306
arXiv:2303.08128
arXiv:2303.09535
arXiv:2205.12910
arXiv:2302.01721
arXiv:2303.04603
arXiv:2302.02997
arXiv:2302.14691
arXiv:2303.02506
arXiv:2303.14964
arXiv:2302.07435
arXiv:2302.07866
arXiv:2210.07382
arXiv:2304.13148
arXiv:2301.13826
arXiv:2205.12486
arXiv:2302.01721
arXiv:2212.10020
arXiv:2302.00083
arXiv:2211.01452
arXiv:2206.11309
arXiv:2304.14241
arXiv:2206.11871
arXiv:2212.10481
arXiv:2212.04875
arXiv:2210.16056
arXiv:2110.06274