PEFT
  • 🌍GET STARTED
    • BOINC AI PEFT
    • Quicktour
    • Installation
  • 🌍TASK GUIDES
    • Image classification using LoRA
    • Prefix tuning for conditional generation
    • Prompt tuning for causal language modeling
    • Semantic segmentation using LoRA
    • P-tuning for sequence classification
    • Dreambooth fine-tuning with LoRA
    • LoRA for token classification
    • int8 training for automatic speech recognition
    • Semantic similarity with LoRA
  • 🌍DEVELOPER GUIDES
    • Working with custom models
    • PEFT low level API
    • Contributing to PEFT
    • Troubleshooting
  • 🌍ACCELERATE INTEGRATIONS
    • DeepSpeed
    • PagFully Sharded Data Parallele 2
  • 🌍CONCEPTUAL GUIDES
    • LoRA
    • Prompting
    • IA3
  • 🌍REFERENCE
    • PEFT model
    • Configuration
    • Tuners
Powered by GitBook
On this page
  • Image classification using LoRA
  • Install dependencies
  • Authenticate to share your model
  • Select a model checkpoint to fine-tune
  • Load a dataset
  • Dataset preparation
  • Load and prepare a model
  • Define training arguments
  • Prepare evaluation metric
  • Define collation function
  • Train and evaluate
  • Share your model and run inference
  1. TASK GUIDES

Image classification using LoRA

PreviousTASK GUIDESNextPrefix tuning for conditional generation

Last updated 1 year ago

Image classification using LoRA

This guide demonstrates how to use LoRA, a low-rank approximation technique, to fine-tune an image classification model. By using LoRA from 🌍 PEFT, we can reduce the number of trainable parameters in the model to only 0.77% of the original.

LoRA achieves this reduction by adding low-rank “update matrices” to specific blocks of the model, such as the attention blocks. During fine-tuning, only these matrices are trained, while the original model parameters are left unchanged. At inference time, the update matrices are merged with the original model parameters to produce the final classification result.

For more information on LoRA, please refer to the .

Install dependencies

Install the libraries required for model training:

Copied

!pip install transformers accelerate evaluate datasets peft -q

Check the versions of all required libraries to make sure you are up to date:

Copied

import transformers
import accelerate
import peft

print(f"Transformers version: {transformers.__version__}")
print(f"Accelerate version: {accelerate.__version__}")
print(f"PEFT version: {peft.__version__}")
"Transformers version: 4.27.4"
"Accelerate version: 0.18.0"
"PEFT version: 0.2.0"

Authenticate to share your model

Copied

from boincai_hub import notebook_login

notebook_login()

Select a model checkpoint to fine-tune

Copied

model_checkpoint = "google/vit-base-patch16-224-in21k"

Load a dataset

Copied

from datasets import load_dataset

dataset = load_dataset("food101", split="train[:5000]")

Dataset preparation

To prepare the dataset for training and evaluation, create label2id and id2label dictionaries. These will come in handy when performing inference and for metadata information:

Copied

labels = dataset.features["label"].names
label2id, id2label = dict(), dict()
for i, label in enumerate(labels):
    label2id[label] = i
    id2label[i] = label

id2label[2]
"baklava"

Next, load the image processor of the model you’re fine-tuning:

Copied

from transformers import AutoImageProcessor

image_processor = AutoImageProcessor.from_pretrained(model_checkpoint)

The image_processor contains useful information on which size the training and evaluation images should be resized to, as well as values that should be used to normalize the pixel values. Using the image_processor, prepare transformation functions for the datasets. These functions will include data augmentation and pixel scaling:

Copied

from torchvision.transforms import (
    CenterCrop,
    Compose,
    Normalize,
    RandomHorizontalFlip,
    RandomResizedCrop,
    Resize,
    ToTensor,
)

normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std)
train_transforms = Compose(
    [
        RandomResizedCrop(image_processor.size["height"]),
        RandomHorizontalFlip(),
        ToTensor(),
        normalize,
    ]
)

val_transforms = Compose(
    [
        Resize(image_processor.size["height"]),
        CenterCrop(image_processor.size["height"]),
        ToTensor(),
        normalize,
    ]
)


def preprocess_train(example_batch):
    """Apply train_transforms across a batch."""
    example_batch["pixel_values"] = [train_transforms(image.convert("RGB")) for image in example_batch["image"]]
    return example_batch


def preprocess_val(example_batch):
    """Apply val_transforms across a batch."""
    example_batch["pixel_values"] = [val_transforms(image.convert("RGB")) for image in example_batch["image"]]
    return example_batch

Split the dataset into training and validation sets:

Copied

splits = dataset.train_test_split(test_size=0.1)
train_ds = splits["train"]
val_ds = splits["test"]

Finally, set the transformation functions for the datasets accordingly:

Copied

train_ds.set_transform(preprocess_train)
val_ds.set_transform(preprocess_val)

Load and prepare a model

Before loading the model, let’s define a helper function to check the total number of parameters a model has, as well as how many of them are trainable.

Copied

def print_trainable_parameters(model):
    trainable_params = 0
    all_param = 0
    for _, param in model.named_parameters():
        all_param += param.numel()
        if param.requires_grad:
            trainable_params += param.numel()
    print(
        f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param:.2f}"
    )

Copied

Some weights of ViTForImageClassification were not initialized from the model checkpoint at google/vit-base-patch16-224-in21k and are newly initialized: ['classifier.weight', 'classifier.bias']

Copied

from transformers import AutoModelForImageClassification, TrainingArguments, Trainer

model = AutoModelForImageClassification.from_pretrained(
    model_checkpoint,
    label2id=label2id,
    id2label=id2label,
    ignore_mismatched_sizes=True,  # provide this in case you're planning to fine-tune an already fine-tuned checkpoint
)

Before creating a PeftModel, you can check the number of trainable parameters in the original model:

Copied

print_trainable_parameters(model)
"trainable params: 85876325 || all params: 85876325 || trainable%: 100.00"

Next, use get_peft_model to wrap the base model so that “update” matrices are added to the respective places.

Copied

from peft import LoraConfig, get_peft_model

config = LoraConfig(
    r=16,
    lora_alpha=16,
    target_modules=["query", "value"],
    lora_dropout=0.1,
    bias="none",
    modules_to_save=["classifier"],
)
lora_model = get_peft_model(model, config)
print_trainable_parameters(lora_model)
"trainable params: 667493 || all params: 86466149 || trainable%: 0.77"

Let’s unpack what’s going on here. To use LoRA, you need to specify the target modules in LoraConfig so that get_peft_model() knows which modules inside our model need to be amended with LoRA matrices. In this example, we’re only interested in targeting the query and value matrices of the attention blocks of the base model. Since the parameters corresponding to these matrices are “named” “query” and “value” respectively, we specify them accordingly in the target_modules argument of LoraConfig.

We also specify modules_to_save. After wrapping the base model with get_peft_model() along with the config, we get a new model where only the LoRA parameters are trainable (so-called “update matrices”) while the pre-trained parameters are kept frozen. However, we want the classifier parameters to be trained too when fine-tuning the base model on our custom dataset. To ensure that the classifier parameters are also trained, we specify modules_to_save. This also ensures that these modules are serialized alongside the LoRA trainable parameters when using utilities like save_pretrained() and push_to_hub().

Here’s what the other parameters mean:

  • r: The dimension used by the LoRA update matrices.

  • alpha: Scaling factor.

  • bias: Specifies if the bias parameters should be trained. None denotes none of the bias parameters will be trained.

r and alpha together control the total number of final trainable parameters when using LoRA, giving you the flexibility to balance a trade-off between end performance and compute efficiency.

By looking at the number of trainable parameters, you can see how many parameters we’re actually training. Since the goal is to achieve parameter-efficient fine-tuning, you should expect to see fewer trainable parameters in the lora_model in comparison to the original model, which is indeed the case here.

Define training arguments

Copied

from transformers import TrainingArguments, Trainer


model_name = model_checkpoint.split("/")[-1]
batch_size = 128

args = TrainingArguments(
    f"{model_name}-finetuned-lora-food101",
    remove_unused_columns=False,
    evaluation_strategy="epoch",
    save_strategy="epoch",
    learning_rate=5e-3,
    per_device_train_batch_size=batch_size,
    gradient_accumulation_steps=4,
    per_device_eval_batch_size=batch_size,
    fp16=True,
    num_train_epochs=5,
    logging_steps=10,
    load_best_model_at_end=True,
    metric_for_best_model="accuracy",
    push_to_hub=True,
    label_names=["labels"],
)

Compared to non-PEFT methods, you can use a larger batch size since there are fewer parameters to train. You can also set a larger learning rate than the normal (1e-5 for example).

This can potentially also reduce the need to conduct expensive hyperparameter tuning experiments.

Prepare evaluation metric

Copied

import numpy as np
import evaluate

metric = evaluate.load("accuracy")


def compute_metrics(eval_pred):
    """Computes accuracy on a batch of predictions"""
    predictions = np.argmax(eval_pred.predictions, axis=1)
    return metric.compute(predictions=predictions, references=eval_pred.label_ids)

The compute_metrics function takes a named tuple as input: predictions, which are the logits of the model as Numpy arrays, and label_ids, which are the ground-truth labels as Numpy arrays.

Define collation function

Copied

import torch


def collate_fn(examples):
    pixel_values = torch.stack([example["pixel_values"] for example in examples])
    labels = torch.tensor([example["label"] for example in examples])
    return {"pixel_values": pixel_values, "labels": labels}

Train and evaluate

Bring everything together - model, training arguments, data, collation function, etc. Then, start the training!

Copied

trainer = Trainer(
    lora_model,
    args,
    train_dataset=train_ds,
    eval_dataset=val_ds,
    tokenizer=image_processor,
    compute_metrics=compute_metrics,
    data_collator=collate_fn,
)
train_results = trainer.train()

In just a few minutes, the fine-tuned model shows 96% validation accuracy even on this small subset of the training dataset.

Copied

trainer.evaluate(val_ds)
{
    "eval_loss": 0.14475855231285095,
    "eval_accuracy": 0.96,
    "eval_runtime": 3.5725,
    "eval_samples_per_second": 139.958,
    "eval_steps_per_second": 1.12,
    "epoch": 5.0,
}

Share your model and run inference

Once the fine-tuning is done, share the LoRA parameters with the community like so:

Copied

repo_name = f"sayakpaul/{model_name}-finetuned-lora-food101"
lora_model.push_to_hub(repo_name)

Next, let’s see how to load the LoRA updated parameters along with our base model for inference. When you wrap a base model with PeftModel, modifications are done in-place. To mitigate any concerns that might stem from in-place modifications, initialize the base model just like you did earlier and construct the inference model.

Copied

from peft import PeftConfig, PeftModel


config = PeftConfig.from_pretrained(repo_name)
model = AutoModelForImageClassification.from_pretrained(
    config.base_model_name_or_path,
    label2id=label2id,
    id2label=id2label,
    ignore_mismatched_sizes=True,  # provide this in case you're planning to fine-tune an already fine-tuned checkpoint
)
# Load the LoRA model
inference_model = PeftModel.from_pretrained(model, repo_name)

Let’s now fetch an example image for inference.

Copied

from PIL import Image
import requests

url = "https://boincai.com/datasets/sayakpaul/sample-datasets/resolve/main/beignets.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
image

First, instantiate an image_processor from the underlying model repo.

Copied

image_processor = AutoImageProcessor.from_pretrained(repo_name)

Then, prepare the example for inference.

Copied

encoding = image_processor(image.convert("RGB"), return_tensors="pt")

Finally, run inference!

Copied

with torch.no_grad():
    outputs = inference_model(**encoding)
    logits = outputs.logits

predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", inference_model.config.id2label[predicted_class_idx])
"Predicted class: beignets"

To share the fine-tuned model at the end of the training with the community, authenticate using your 🌍 token. You can obtain your token from your .

Choose a model checkpoint from any of the model architectures supported for . When in doubt, refer to the in 🌍 Transformers documentation.

To keep this example’s runtime short, let’s only load the first 5000 instances from the training set of the :

It’s important to initialize the original model correctly as it will be used as a base to create the PeftModel you’ll actually fine-tune. Specify the label2id and id2label so that can append a classification head to the underlying model, adapted for this dataset. You should see the following output:

For model fine-tuning, use . It accepts several arguments which you can wrap using .

A collation function is used by to gather a batch of training and evaluation examples and prepare them in a format that is acceptable by the underlying model.

When calling on the lora_model, only the LoRA parameters along with any modules specified in modules_to_save are saved. Take a look at the . You’ll see that it’s only 2.6 MB! This greatly helps with portability, especially when using a very large model to fine-tune (such as ).

🌍
original LoRA paper
account settings
image classification
image classification task guide
Food-101 dataset
AutoModelForImageClassification
Trainer
TrainingArguments
Trainer
push_to_hub
trained LoRA parameters
BLOOM